[1]杨专钊,杨 溪,惠 非,等.海底管线服役条件有限元应力分析[J].焊管,2014,37(8):20-24.[doi:1001-3938(2014)08-0020-05]
 YANG Zhuanzhao,YANG Xi,XI Fei,et al.Finite Element Stress Analysis on Submarine Pipeline Service Condition[J].,2014,37(8):20-24.[doi:1001-3938(2014)08-0020-05]
点击复制

海底管线服役条件有限元应力分析
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
37
期数:
2014年第8期
页码:
20-24
栏目:
试验与研究
出版日期:
2014-08-28

文章信息/Info

Title:
Finite Element Stress Analysis on Submarine Pipeline Service Condition
文章编号:
1001-3938(2014)08-0020-05
作者:
杨专钊12杨 溪12惠 非12王佐强3赵晗君12冯 慧12
(1.北京隆盛泰科石油管科技有限公司, 北京 100101;
2.中国石油集团石油管工程技术研究院, 西安 710077;
3.中海石油(中国)有限公司深圳分公司,深圳 518067)
Author(s):
YANG Zhuanzhao12 YANG Xi12 XI Fei12 WANG Zuoqiang3ZHAO Hanjun12 FENG Hui12
(1. Beijing Longshine Oil Tubular Technology Co., Ltd., Beijing 100101, China;
2. CNPC Tubular Goods Research Institute, Xi’an 710077, China;
3. China National Offshore Oil Corperation, shenzhen branch, Shenzhen 518067, China)
关键词:
海底管线有限元方法配重层应力分析Von mises 等效应力
Keywords:
submarine pipeline Finite Element Methods(FEM) weight coating layer stress analysis Von mises equivalent stress
分类号:
TE973.1
DOI:
1001-3938(2014)08-0020-05
文献标志码:
A
摘要:
采用有限元方法模拟分析了带配重层海洋管?准559 mm×28 mm SMYS 450在海底1 500 m和输送压力为25 MPa条件下服役时的应力状态,结果显示,在受配重层约束下的最大位移为0.046 4×10-3 m,无配重约束位移为0.104×10-3 m;第一主应力和Von mises 等效应力的最大值都分布在管体材料和配重层之间的界面处附近,距离管体外表面约2 mm(壁厚28 mm),最大值分别为128 MPa和216 MPa。模拟结果表明,管线运行是安全的,也说明了采用Von mises 等效应力准则作为管道问题验收极限是可行的。
Abstract:
In this paper, the service stress condition of ?准559 mm×28 mm SMYS 450 marine pipe with concrete weight coating under transmission pressure 25 MPa at 1 500 m subsea was analyzed by the Finite Element Methods(FEM). The result showed that the maximum displacement was 0.046 4×10-3 m within the c onstraint of the weight coating, and the displacement was 0.104×10-3 m without weight coating constraint. The maximum stress of both the 1st principal stress and Von mises equivalent stress were 128 MPa and 216 MPa respectively, which located near the interface between the pipe body and the counterweight layer, about 2 mm to the outside surface of pipe body(28 mm wall thickness). It also indicated that the operation was safety, and using the Von mises equivalent stress criterion as pipeline acceptance limit is workable.

参考文献/References:

[1] DNV OS F101, Submarine Pipeline Systems[S].
[2] API SPEC 5L, Specification For Line Pipe[S].
[3] YANG Z Z, LIU D X, ZHANG X H. Finite Element Methods Analysis of the Stress for Line Pipe with Corrode Groove During Outdoor Storage[J]. Acta Metall.Sin. (Engl. Lett.), 2013,26(02):188-198.
[4] YANG Z Z, LIU D X, ZHANG X H. Study on Residual Strength of Pipe with Single Hemisphere Bottom Defect using FEM Analysis[C]//Advanced Material Research Part 2: Advanced Manufacture Technology, 314-316(2011):1367-1371.
[5] 杨专钊,刘道新,张晓化.含不深度球形缺陷钢管应力集中系数有限元求解[J]. 机械工程材料,2013,37(08):89-94.
[6] 杨专钊,刘道新,张晓化.含腐蚀缺陷钢管剩余强度有限元模拟求解[J]. 腐蚀科学与防护技术, 2013,25(04):281-286.
[7] 杨专钊,刘道新,张晓化. 含平底型腐蚀缺陷钢管剩余强度有限元模拟及试验验证[J].中国腐蚀与防护学报,2013,33(04):339-346.
[8] CALEYO  F, VELAZQUEZ J C, VALOR A, HALLEN J M. Probability Distribution of Pitting Corrosion Depth and Rate in Underground Pipelines: A Monte Carlo Study[J]. Corrosion Science, 2009,51(09):1925-1934.
[9] TURNBULL  A, MCCARTNEY  L N, ZHOU S. A Model to Predict the Evolution of Pitting Corrosion and the Pit-to-crack Transition Incorporating Statistically Distributed Input Parameters[J]. Corrosion Science,2006,48 (08):2084-2105.
[10] ADIB-RAMEZANI H, JEONG J, PLUVINAGE G. Structural Integrity Evaluation of X52 Gas Pipes Subjected to External Corrosion Defects Using the SINTAP Procedure[J]. International Journal of Pressure Vessels and Piping,2006, 83 (06): 420-432.
[11] 杨绪运,何仁洋,刘长征,等. 腐蚀管道体积型缺陷评价方法[J]. 管道技术与设备, 2009 (01): 47-04.
[12] MELIANI M H, MATVIENKO Y G, PLUVINAGE G. Corrosion Defect Assessment on Pipes Using Limit Analysis and Notch Fracture Mechanics[J]. Engineering Failure Analysis,2011,18(01): 271-283.
[13] ROLLINS B C, QUICKEL G T, BEAVERS J A, et al. Failure Analysis in Integrity Management Programs[A]. NACE Corrosion Conference[C]//NACE Corrosion Conference, Nashville, Tennessee, USA: [s.n.],2007: 07145.
[14] CHIODO M S G, RUGGIERI C. Failure Assessments of Corroded Pipelines with Axial Defects Using Stress-based Criteria: Numerical Studies and Verification Analyses[J]. International Journal of Pressure Vessels and Piping,2009, 86 (02-03):164-176.
[15] MOUSTABCHIR H, AZARI  Z, HARIRI S,et al.Experimental and Numerical Study of Stress-strain State of Pressurized Cylindrical Shells with External Defects[J].Engineering Failure Analysis,2010,17(02):506-514.

相似文献/References:

[1]张 备,杨剑峰,王 波.南海荔湾X70和X65大壁厚海洋管线的开发与应用研究[J].焊管,2013,36(9):30.[doi:1001-3938(2013)09-0030-08]
 ZHANG Bei,YANG Jianfeng,WANG Bo.Development and Application of Heavy Wall ThicknessX70 &X65 Submarine Pipeline Steel in the South China Sea′ Li Wan[J].,2013,36(8):30.[doi:1001-3938(2013)09-0030-08]
[2]牛爱军,毕宗岳,牛 辉,等.X70厚壁海底管线钢管研制[J].焊管,2013,36(10):26.[doi:1001-3938(2013)10-0026-05]
 NIU Aijun,BI Zongyue,NIU Hui,et al.Research and Development of X70 Steel Pipe withHeavy Wall Thickness Used in Submarine Pipeline[J].,2013,36(8):26.[doi:1001-3938(2013)10-0026-05]
[3]夏梦莹,张 宏,刘啸奔,等.长输管道埋地弯头结构的复杂应力分析■[J].焊管,2015,38(9):22.[doi:1001-3938(2015)09-0022-04]
 XIA Mengying,ZHANG Hong,LIU Xiaoben,et al.Complex Stress Analysis on Buried Elbow of Long Distance Pipelines[J].,2015,38(8):22.[doi:1001-3938(2015)09-0022-04]
[4]张新民,丁 辉,王海锋,等.海底管线用X65钢级Φ610 mm×20.6 mm HFW钢管批量生产[J].焊管,2019,42(1):55.[doi:10.19291/j.cnki.1001-3938.2019.1.010]
 ZHANG Xinmin,DING Hui,WANG Haifeng,et al.Mass Production of Submarine Pipelines with X65 Grade Φ610 mm×20.6 mm HFW Steel Pipe[J].,2019,42(8):55.[doi:10.19291/j.cnki.1001-3938.2019.1.010]
[5]李虎昌,李靖龙,王海峰,等.海底管线用高频焊管焊缝常见缺陷及超声波检测辨识方法[J].焊管,2021,44(2):57.[doi:10.19291/j.cnki.1001-3938.2021.02.013]
 LI Huchang,LI Jinglong,WANG Haifeng,et al.Common Defects of HFW Steel Pipe Welds for Offshore Service Pipeline and Ultrasonic Detection and Identification Method[J].,2021,44(8):57.[doi:10.19291/j.cnki.1001-3938.2021.02.013]
[6]王怡然,孙磊磊.退火温度对小直径厚壁HFW焊管组织与性能的影响[J].焊管,2021,44(5):9.[doi:10.19291/j.cnki.1001-3938.2021.05.002]
 WANG Yiran,SUN Leilei.Influence of Annealing Temperature on Micostructure and Properties of Small-diameter Thick-wall HFW Pipe[J].,2021,44(8):9.[doi:10.19291/j.cnki.1001-3938.2021.05.002]
[7]牛爱军,牛 辉,赵 强,等.基于应变设计的L485海洋管材开发[J].焊管,2022,45(11):31.[doi:10.19291/j.cnki.1001-3938.2022.11.006]
 NIU Aijun,NIU Hui,ZHAO Qiang,et al.Development of L485 Marine Pipe based on Strain Design[J].,2022,45(8):31.[doi:10.19291/j.cnki.1001-3938.2022.11.006]

备注/Memo

备注/Memo:
收稿日期:2014-03-24
作者简介:杨专钊(1979—),男,硕士,高级工程师,主要从事石油管工程研究开发、技术咨询和技术支持服务。
更新日期/Last Update: