[1]申 毅,任国琪,王 荣.X80管线钢在模拟土壤溶液中的阳极溶解特征[J].焊管,2014,37(10):11-15.[doi:1001-3938(2014)10-0011-05]
 SHEN Yi,REN Guoqi,WANG Rong.nodic Dissolution Characteristics of the X80 Pipeline Steel inSimulated Soil Solution[J].,2014,37(10):11-15.[doi:1001-3938(2014)10-0011-05]
点击复制

X80管线钢在模拟土壤溶液中的阳极溶解特征
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
37
期数:
2014年第10期
页码:
11-15
栏目:
试验与研究
出版日期:
2014-10-28

文章信息/Info

Title:
nodic Dissolution Characteristics of the X80 Pipeline Steel in
Simulated Soil Solution
文章编号:
1001-3938(2014)10-0011-05
作者:
申 毅任国琪王 荣
(西安石油大学 材料科学与工程学院,西安 710065)
Author(s):
SHEN YiREN GuoqiWANG Rong
(School of Materials Science and Engineering,Xi’an Shiyou University,Xi’an 710065,China)
关键词:
X80管线钢NS4溶液动电位极化波动应力阳极溶解
Keywords:
X80 pipeline steelNS4 solutionpotentiodynamic polarizationfluctuation stressanodic dissolution
分类号:
TG172.4
DOI:
1001-3938(2014)10-0011-05
文献标志码:
A
摘要:
应用动电位极化方法研究了X80管线钢在不同pH条件下模拟土壤局部环境NS4溶液中的阳极溶解特征,并通过极化曲线的解析得到电化学腐蚀参数。X80管线钢在NS4溶液中具有活性阳极溶解特征,阳极过程为多步反应机制,局部溶液pH值和波动应力循环对阳极溶解的机制没有影响。当溶液pH值在3~7范围内,随着溶液pH值降低,阳极溶解电流密度增加,波动应力也促进阳极溶解过程。讨论了阳极溶解与管道近中性pH-SCC的关系,可为埋地管道近中性pH-SCC的控制提供参考。
Abstract:
Potentiodynamic polarization technique was adopted to investigate the anodic dissolution characteristics of X80 pipeline steel in a simulated localized soil environment,which is NS4 solution. Electrochemical corrosion parameters were obtained by resolving polarization curves. The corrosion of the X80 pipeline steel is characteristic of active anodic dissolution,and the anodic process includes several multi-step reaction mechanisms. The pH-value of the NS4 solution and fluctuation cycle stress have no effect on the mechanism of anodic dissolution. The corrosion current density increases when the value of pH decreases in the range between 3 and 7. Fluctuation stress also enhances the anodic dissolution. The correlation between anodic dissolution and near-neutral pH-SCC was discussed. These can provide a reference for controlling the near-neutral pH-SCC of pipes buried in soil.

参考文献/References:

[1] PARKINS R N. Investigations Relating to Environment Sensitive Fracture in the TransCanada Pipeline System Report to TCPL[R]. 1988.
[2] MARTINEZ F H,STAFFORD SW. EPNG Develops Model to Predict Potential Locations for SCC[J]. Pipe Line Ind.,1994,77(07):29.
[3] SHIPILOV S A,MAY I L. Structural Integrity of Aging Buried Pipelines Having Cathodic Protection[J]. Eng. Fail.Anal.,2006,13(07):1159.
[4] GU B, YU W Z, LUO J L, et a1. Transgranular Stress Corrosion Cracking of X-80 and X-52 Pipeline Steels in Dilut Aqueous Solution with Near Neutral pH[J]. Corrison,1999,55(03):312.
[5] PARKINS R N,BLANCHARD W K,DELANTY B S. Transgranular Stress Corrosion Cracking of High-pressure Pipelines in Contact with Solutions of Near Neutral pH[J]. Corrion,1994,50(05):394.
[6] LU B T,LUO J L,NORTON P R,et al. Effect of Dissolved Hydrogen and Elastic and Plastic Deformation on Active Dissolution of Pipeline Steel in Anaerobic Groundwater of Near Neutral pH[J]. Acta Materialia,2009,57(01):41.
[7] JAVIDI M,HORE S B. Investigating the Mechanism of Stress Corrosion Cracking in Near Neutral and High pH Environments for API 5L X52 Steel[J]. Corrion Science,2014(80):213.
[8] LIU Z Y,LI X G,CHENG Y F. Mechanistic Aspect of Near Neutral pH Stress Corrosion Cracking of Pipelines Under Cathodic Polarization[J]. Corrion Science,2012(55):54.
[9] VAN BOVEN G,CHEN W,ROGGE R. The Role of Residual Stress in Neutral pH Stress Corrosion Cracking of Pipeline Steels Part I:Pitting and Cracking Occurrence[J]. Acta Materialia,2007,55(01):29.
[10] ESLAMI A,FANG B,KANIA R,et al. Stress Corrosion Cracking Initiation Under the Disbonded Coating of Pipeline Steel in Near Neutral pH Environment[J].Corrosion Science,2010,52(11):3750.
[11] TANG X,CHENG YF. Quantitative Characterization by Micro-electrochemical Measurements of the Synergism of Hydrogen,Stress and Dissolution on Near Neutral pH Stress Corrosion Cracking of Pipelines[J]. Corrion Science,2011,53(09):2927.
[12] ZHANG XY, LAMBERT SB, SUTHERBY R, et al. Transgranular Stress Corrosion Cracking of X60 Pipeline Steel in Simulation Ground Water[J]. Corrion, 1999, 55(03):297.
[13]宋诗哲. 腐蚀电化学研究方法[M]. 北京:化学工业出版社,1988.
[14]BOCKRIS J,DRAZIC D,DESPIC A R. The Electrode Kinetics of the Deposition and Dissolution of Iron[J]. Electrochimica Acta,1961,4(02):325.
[15]LIU Z Y,LI X G,CHENG Y F. In-situ Characterization of the Electrochemistry of Grain and Grain Boundary of An X70 Steel in A Near Neutral pH Solution[J].Electrochem. Commun.,2010,12(07):936.
[16]CHENG Y F, NIU L . Mechanism for Hydrogen Evolution Reaction on Pipeline Steel in Near Neutral pH Solution[J].Electrochem. Commun.,2007,9(04):558.

相似文献/References:

[1]孙宏.西气东输二线用国产X80钢级螺旋埋弧焊管性能分析[J].焊管,2010,33(2):13.[doi:1001-3938(2010)02-0013-04]
 SUN Hong.Analysis on Domestic X80 Grade SAWH Pipe Property Used in the[J].,2010,33(10):13.[doi:1001-3938(2010)02-0013-04]
[2]李立科,郑茂盛,孙利军,等.热处理对X80管线钢组织性能的影响[J].焊管,2010,33(4):18.[doi:1001-3938(2010)04-0018-04]
 LI Li-ke,ZHENG Mao-sheng,SUN Li-jun,et al.The Influence of Heat Treatment on Microstructure Properties of X80 Pipeline Steel[J].,2010,33(10):18.[doi:1001-3938(2010)04-0018-04]
[3]王娜,雷阿利.X80管线钢焊接接头中焊缝的耐蚀性的研究[J].焊管,2010,33(5):24.[doi:1001-3938(2010)05-0024-06]
 WANG Na,LEI A-li.Research on the Corrosion Restistance of X80 Pipeline Steel Welding Joints in Sulfer-containing Medium[J].,2010,33(10):24.[doi:1001-3938(2010)05-0024-06]
[4]张敏,赵鹏康,毕宗岳,等.X80管线钢用气体保护焊丝的研制[J].焊管,2010,33(10):23.[doi:1001-3938(2010)10-0023-06]
 ZHANG Min,ZHAO Peng-kang,BI Zong-yue,et al.Development of Gas-shielded Welding Wire for X80 Pipeline Steel[J].,2010,33(10):23.[doi:1001-3938(2010)10-0023-06]
[5]李根全,肖凡,李志忠,等.螺旋埋弧焊管焊缝韧性[J].焊管,2010,33(8):24.[doi:1001-3938(2010)08-0024-04]
 LI Gen-quan,XIAO Fan,LI Zhi-zhong,et al.Weld Toughness of SAWH Pipes[J].,2010,33(10):24.[doi:1001-3938(2010)08-0024-04]
[6]刘振伟,郭 晖,尚成嘉.高Nb X80管线钢的应变时效研究[J].焊管,2011,34(5):12.
[7]贾改风,梁永昌,王文录,等.邯钢厚规格X80管线钢的研发与应用[J].焊管,2011,34(11):24.[doi:1001-3938(2011)11-0024-06]
 JIA Gai-feng,LIANG Yong-chang,WANG Wen-lu,et al.Development and Application of X80 Pipeline Steel with Heavy Wall Thickness in HanSteel[J].,2011,34(10):24.[doi:1001-3938(2011)11-0024-06]
[8]赵志伟,徐 强,彭立山,等.X80感应加热弯管回火工艺研究[J].焊管,2012,35(1):44.[doi:1001-3938-(2012)01-0044-04]
 ZHAO Zhi-wei,XU Qiang,PENG Li-shan,et al.Study on Tempering Process of X80 Induction Heating Bend[J].,2012,35(10):44.[doi:1001-3938-(2012)01-0044-04]
[9]韩晨.高铌和低铌X80管线钢动态再结晶行为的研究[J].焊管,2012,35(2):10.[doi:1001-3938(2012)02-0010-06]
 HAN Chen.Study on Dynamic Recrystallization Behavior of High-Nb and Low-Nb X80 Pipeline Steel[J].,2012,35(10):10.[doi:1001-3938(2012)02-0010-06]
[10]韩秀林,李国鹏,张丽娜,等.X80直缝埋弧焊管制管前后拉伸性能的变化[J].焊管,2012,35(3):19.[doi:1001-3938(2012)03-0019-05]
 HAN Xiu-lin,LI Guo-peng,ZHANG li-na,et al.Study on the Tensile Property Before and After Forming of X80 SAWL Pipe[J].,2012,35(10):19.[doi:1001-3938(2012)03-0019-05]

备注/Memo

备注/Memo:
收稿日期:2014-06-03
作者简介:申毅(1990—),男,硕士,研究方向为材料腐蚀机理与防护技术。
更新日期/Last Update: