[1]涂圣文,帅 健,刘德绪.饱和H2S水溶液中L360管材疲劳裂纹扩展试验研究[J].焊管,2015,38(8):1-5.[doi:1001-3938(2015)08-0001-05]
 TU Shengwen,SHUAI Jian,LIU Dexu.Research on Fatigue Crack Growth Test of L360 Pipeline Steel in Saturated Hydrogen Sulphide Solution[J].,2015,38(8):1-5.[doi:1001-3938(2015)08-0001-05]
点击复制

饱和H2S水溶液中L360管材疲劳裂纹扩展试验研究
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
38
期数:
2015年第8期
页码:
1-5
栏目:
试验与研究
出版日期:
2015-08-28

文章信息/Info

Title:
Research on Fatigue Crack Growth Test of L360 Pipeline Steel
 in Saturated Hydrogen Sulphide Solution
文章编号:
1001-3938(2015)08-0001-05
作者:
涂圣文1帅 健1刘德绪2
1. 中国石油大学(北京), 北京 102249;
2. 中原石油勘探局勘察设计研究院, 河南 濮阳 457001
Author(s):
TU Shengwen1 SHUAI Jian1 LIU Dexu2
1. China University of Petroleum, Beijing 102249, China;
 2. Survey and Design Research Institute, Zhongyuan Petroleum Exploration Bureau, Puyang 457001, Henan, China
关键词:
钢管腐蚀H2S疲劳裂纹扩展
Keywords:
steel pipe corrosion hydrogen sulfide fatigue crack growth
分类号:
TG174.3+4
DOI:
1001-3938(2015)08-0001-05
文献标志码:
A
摘要:
输气管道中的酸性气体在管道局部积液处形成酸性环境会促使裂纹的形成和生长。交变载荷作用下裂纹扩展速度增大,降低了管道的寿命和强度。采用服役中的L360管道加工成三点弯曲试样在饱和H2S水溶液中进行疲劳裂纹扩展试验。试验表明,饱和H2S水溶液中裂纹扩展速度大于空气中裂纹扩展速度,频率越低,裂纹扩展速度越快;扫描电镜观察显示饱和H2S水溶液中裂纹扩展断面以脆性断裂为主,穿晶断裂和沿晶断裂为主要破坏形式,频率越低,穿晶断裂所占面积越大。
Abstract:
Crack would occur and grow in local hydrops area when acid environment was formed because of acid gas in gas pipeline. Crack growth rate would increase in fluctuating load which decrease the service time and strength of pipeline. Fatigue crack growth test was conducted in saturated hydrogen sulphide solution with SENB specimens which was machined from L360 pipeline. Test results showed that fatigue crack growth rate is faster in saturated hydrogen sulphide solution than that in air.Fatigue crack growth rate increases with the decrement of frequency. Brittle fracture is the principal failure model in crack propagation surface,transgranular fracture and intergranular fracture are major fracture mode,the portion of transgranular fracture area in fracture surface would increase as frequency decrease.

参考文献/References:

[1]帅健. 管线力学[M]. 北京:科学出版社,2010: 33-49.
[2]李玉星,姚光镇. 输气管道设计与管理[M]. 东营:中国石油大学出版社,2009: 11-13.
[3]SHERAR B W A, POWER I M, KEECH P G, et al. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion[J]. Corrosion Science, 2011, 53(3): 955-960.[4]QI Y, LUO H, ZHENG S, et al. Effect of temperature on the corrosion behavior of carbon steel in hydrogen sulphide environments[J]. Int. J. Electrochem. Sci, 2014(9): 2101-2112.
[5]ZHOU C, ZHENG S, CHEN C, et al. The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel[J]. Corrosion Science, 2013(67): 184-192.
[6]KAPPES M, FRANKEL G S, THODLA R, et al. Hydrogen permeation and corrosion fatigue crack growth rates of X65 pipeline steel exposed to acid brines containing thiosulfate or hydrogen sulfide[J]. Corrosion, 2012, 68(11): 1015-1028.
[7]ODA Y, NOGUCHI H. Observation of hydrogen effects on fatigue crack growth behaviour in an 18Cr-8Ni austenitic stainless steel[J]. International journal of fracture, 2005, 132(2): 99-113.
[8]MURAKAMI Y, MATSUOKA S. Effect of hydrogen on fatigue crack growth of metals[J]. Engineering Fracture Mechanics, 2010, 77(11): 1926-1940.
[9]HOLOBUT P. Fatigue crack growth model for a thin steel plate containing hydrogen[J]. International Journal of Fatigue, 2010, 32(12): 1895-1903.
[10] WENG L, ZHANG J, KALNAUS S, et al. Corrosion fatigue crack growth of AISI 4340 steel[J]. International Journal of Fatigue, 2013(48): 156-164.
[11] DMYTRAKH I M, SMIYAN O D, SYROTYUK A M,  et al. Relationship between fatigue crack growth behaviour and local hydrogen concentration near crack tip in pipeline steel[J]. International Journal of Fatigue, 2013(50): 26-32.
[12] AMARO R L, RUSTAGI N, FINDLEY K O, et al. Modeling the fatigue crack growth of X100 pipeline steel in gaseous hydrogen[J]. International Journal of Fatigue, 2014(59): 262-271.
[13] LANDES J D, WEI R P. Correlation between sustained-load and fatigue crack growth in high-strength steels[J]. materials research & standards, 1969(11):356-365.
[14] WEI R P, GAO M. Reconsideration of the superposition model for environmentally assisted fatigue crack growth[J]. Scripta metallurgica, 1983, 17(7): 959-962.
[15]HARLOW D G, WEI R P. A mechanistically based approach to probability modeling for corrosion fatigue crack growth[J]. Engineering fracture mechanics, 1993, 45(1): 79-88.
[16]AUSTEN I M, MCINTYRE P. Corrosion fatigue of high-strength steel in low-pressure hydrogen gas[J]. Metal  Science, 1979, 13(7): 420-428.
[17]KANG D H, LEE J K, KIM T W. Corrosion fatigue crack propagation of high-strength steel HSB800 in a seawater environment[J]. Procedia Engineering, 2011(10): 1170- 1175.
[18]WANG R. A fracture model of corrosion fatigue crack propagation of aluminum alloys based on the material elements fracture ahead of a crack tip[J]. International Journal of Fatigue, 2008, 30(8): 1376-1386.
[19]VASUDEVAN A K, SURESH S. Influence of corrosion deposits on near-threshold fatigue crack growth behavior in 2xxx and 7xxx series aluminum alloys[J]. Metallurgical Transactions A, 1982, 13(12): 2271-2280.

相似文献/References:

[1]李春林.条形码技术在钢管企业中的应用[J].焊管,2007,30(4):47.[doi:1001-3938(2007)04-0047-02]
 LI Chun-lin.Application of Bar Code Technology by Steel Pipe Enterprise[J].,2007,30(8):47.[doi:1001-3938(2007)04-0047-02]
[2]张振永,郭 彬.腐蚀管道剩余强度的确定及改造措施[J].焊管,2007,30(4):75.[doi:1001-3938(2007)04-0075-04]
 ZHANG Zhen-yong,GUO Bin.Determination of Residual Strength for Corrosion Pipeline and Rebuild Measures[J].,2007,30(8):75.[doi:1001-3938(2007)04-0075-04]
[3]张朝生 编译.高强度管道钢管表面应力腐蚀裂纹的研究[J].焊管,2007,30(4):82.[doi:1001-3938(2007)04-0083-03]
 Edited and Translated by ZHANG Chao-sheng.Study on Surface Stress Corrosion Crack of High Strength Pipeline[J].,2007,30(8):82.[doi:1001-3938(2007)04-0083-03]
[4]孙 宏.高钢级螺旋缝焊接钢管拉伸试样类型选择[J].焊管,2007,30(5):36.[doi:1001-3938(2007)05-0036-03]
 SUN Hong.Study of Choosing the Tensile Test Specimen’s Type for High Grade SSAW Steel Pipe[J].,2007,30(8):36.[doi:1001-3938(2007)05-0036-03]
[5]郭继富,王素娟,张艳龙,等.钢管数控仿形锯锯片TiAlN涂层技术的应用[J].焊管,2007,30(6):48.[doi:1001-3938(2007)06-0048-03]
 GUO Ji-fu,WANG Shu-juan,ZHANG Yan-long,et al.Application of TiAlN Coating Technology of Numerical Control and Profile Modeling Saw Chip for Steel Pipe[J].,2007,30(8):48.[doi:1001-3938(2007)06-0048-03]
[6]岳进才.常见钢管质量问题及成因分析[J].焊管,2008,31(1):64.[doi:1001-3938(2008)01-0064-06]
 YUE Jin-cai.Common Quality Problem & Cause Analyses of Steel Pipe[J].,2008,31(8):64.[doi:1001-3938(2008)01-0064-06]
[7]赵 坤.浅谈ERW钢管错边缺陷[J].焊管,2008,31(2):67.[doi:1001-3938(2008)02-0067-02]
 ZHAO Kun.Brief Discussion on Offset Defect of ERW Pipe[J].,2008,31(8):67.[doi:1001-3938(2008)02-0067-02]
[8]郭艳玲,高真凤,张兴虎.俄罗斯国内钢管产销趋势[J].焊管,2008,31(2):86.[doi:1001-3938(2008)02-0086-05]
 GUO Yan-ling,GAO Zhen-feng,ZHANG Xing-hu.Trends of Steel Pipe Production and Sale in Russia[J].,2008,31(8):86.[doi:1001-3938(2008)02-0086-05]
[9]张正龙.Φ219 mm钢管内涂层“缩坑”缺陷分析[J].焊管,2008,31(4):64.[doi:1001-3938(2008)04-0064-03]
 ZHANG Zheng-long.Analysis on ‘Shrinkage Dent’of Φ219 mm Steel Pipe Internal Coating[J].,2008,31(8):64.[doi:1001-3938(2008)04-0064-03]
[10]冯来义,罗晓梅.钢管预热中频设备可控硅的正确使用及保护[J].焊管,2008,31(5):66.[doi:1001-3938(2008)05-0066-04]
 FENG Lai-yi,LUO Xiao-mei.Corrective Using & Protecting of Silicon Controlled Rectifier in Intermediate Frequency Induction Heating Equipment[J].,2008,31(8):66.[doi:1001-3938(2008)05-0066-04]
[11]钱进森,李振东,刘月发,等.低H2S/CO2分压比下油管钢腐蚀产物膜特征及形成机制研究[J].焊管,2015,38(6):11.[doi:1001-3938(2015)06-0011-05]
 QIAN Jinsen,LI Zhendong,LIU Yuefa,et al.Characteristic and Formed Mechanism of Corrosion Film of Oil Tube Steel in Low H2S/CO2 Partial Pressure Environment[J].,2015,38(8):11.[doi:1001-3938(2015)06-0011-05]
[12]张彦文,王志奋,韩荣东,等.12Cr1MoV钢管爆管失效分析[J].焊管,2020,43(8):38.[doi:10.19291/j.cnki.1001-3938.2020.08.007]
 ZHANG Yanwen,WANG Zhifen,HAN Rongdong,et al.Failure Analysis of 12Cr1MoV Pipe Burst[J].,2020,43(8):38.[doi:10.19291/j.cnki.1001-3938.2020.08.007]

备注/Memo

备注/Memo:
收稿日期:2015-03-30
基金项目:国家重大科技专项(2011ZX05017-004-HZ04)。
作者简介:涂圣文(1988—),男,博士研究生,主要从事油气管道安全及力学分析等领域的研究。
更新日期/Last Update: