[1]毕宗岳.2205/X65冶金复合管材焊接工艺及焊缝组织性能研究[J].焊管,2019,42(2):1-6.[doi:10.19291/j.cnki.1001-3938.2019.2.001]
 BI Zongyue,Welding Process and Microstructure and Mechanical Property of Butt Joints of 2205/X65 Metallurgical Clad Pipe[J].,2019,42(2):1-6.[doi:10.19291/j.cnki.1001-3938.2019.2.001]
点击复制

2205/X65冶金复合管材焊接工艺及
焊缝组织性能研究
()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
42
期数:
2019年第2期
页码:
1-6
栏目:
试验与研究
出版日期:
2019-02-28

文章信息/Info

Title:
Welding Process and Microstructure and Mechanical Property of
Butt Joints of 2205/X65 Metallurgical Clad Pipe
文章编号:
10.19291/j.cnki.1001-3938.2019.2.001
作者:
毕宗岳1 2
1. 国家石油天然气管材工程技术研究中心, 陕西 宝鸡 721008;
2. 宝鸡石油钢管有限责任公司 钢管研究院, 陕西 宝鸡 721008
Author(s):
BI Zongyue1 2
1. Chinese National Engineering Technology Research Center for Petroleum and Natural Gas Tubular Goods, Baoji 721008, Shaanxi, China;
2. Steel Pipe Research Institute of Baoji Petroleum Steel Pipe Co., Ltd., Baoji 721008, Shaanxi, China
关键词:
2205/X65冶金复合管TIG+MAG焊双相不锈钢显微组织晶间腐蚀平均腐蚀速率
Keywords:
2205/X65 metallurgical composite pipe TIG+MAG welding duplex stainless steel microstructure intergranular corrosion average corrosion rate
分类号:
TG442
DOI:
10.19291/j.cnki.1001-3938.2019.2.001
文献标志码:
A
摘要:
为了开发抗H2S、CO2强腐蚀性介质输送用复合管材,采用TIG+MAG焊接工艺对Φ610 mm×(2+14) mm 2205/X65冶金复合管(复层不锈钢厚2 mm,基层管线钢厚14 mm)进行了以ER309作为过渡填充金属的熔焊连接试验。利用OM、SEM分析了焊缝区组织特征和相比例,并测试了力学性能和腐蚀性能。结果显示,该工艺方案有效抑制了合金元素稀释,使得焊缝金属合金成分保持在合理水平,呈铁素体(α)+奥氏体(γ)双相组织特征,复层焊缝铁素体含量平均值为45.62%,过渡层焊缝铁素体含量平均值为39.98%,均满足35%~65%要求。试制复合管焊缝抗拉强度达690~715 MPa,正反弯曲(弯轴直径70 mm)180°拉伸面无裂纹,-10 ℃下低温冲击功值达98~118 J。复层焊缝在腐蚀环境(H2S分压0.8 MPa,CO2分压1.5 MPa,Cl-浓度≤15%)中腐蚀速率均值仅为0.000 875 mm/a,远小于项目指标要求的0.15 mm/a;HIC试验裂纹敏感率CSR、裂纹长度率CLR和裂纹厚度率CTR均为0,且对SSCC不敏感;晶间腐蚀试验显示复层焊缝具有优良的抗晶间腐蚀性能。研究结果表明,采用本研究工艺技术试制的大直径 2205/X65冶金复合管各项性能优于相关标准要求,可作为含有H2S、CO2等腐蚀介质输送管道选材。
Abstract:
In order to develop clad pipe for H2S and CO2 strong corrosive medium transportation, the gas tungsten arc welding  and metal active-gas welding test with ER309 filler metals for weld joint was carried out on Φ610 mm×(2+14) mm 2205/X65 clad pipe with thickness16 mm(clad-layer duplex stainless steel 2205 with thickness 2 mm, X65 steel with thickness 14 mm). By using optical microscopy, scanning electron microscopy, tensile test, bending test, impact test and corrosion test, the microstructure, two-phase ratio, mechanical properties and the corrosion properties of the weld joint were studied. The results indicate that the weld process scheme could effectively inhibit the dilution of alloy elements, so that the alloy composition of the weld metal was maintained at a reasonable level. The weld metal exhibits the quarter-phase microstructure characteristics of ferrite+austenite, the average value of ferrite content of clad-layer weld was 45.62%, and the  average value of ferrite content of transition layer weld was 39.98%, both of which were within the reasonable range of 35% to 65%. The tensile strength value of the welded joint of the trial production composite pipe reached 690~715 MPa, and there was no crack at the tensile surface of theweld bending specimen positive and negative (bending axis diameter 70 mm, bending angle 180°), and the impact work value of -10 °C reached 98~118 J. The corrosion rate average value of clad-layer weld in the simulation environment(H2S partial pressure of 0.8 MPa, CO2 partial pressure of 1.5 MPa, Cl- concentration ≤15%) was 0.000 875 mm/a, much smaller than the requirements of the project indicators 0.15 mm/a. The cracking sensitivity rate, crack length ratio, crack thickness ratio of the clad-layer weld HIC test were all zero, and the clad-layer weld was insensitive to SSCC. At the same time, the test of intergranular corrosion performance showed that the clad-layer weld had very good corrosion resistance. In summary, the large diameter 2205/X65 metallurgical composite pipes new products developed by this institute had excellent performance and satisfied relevant standards, and could be used for the selection of pipelines containing corrosion media such as H2S and CO2.

参考文献/References:

[1] 马钢, 白瑞. 全球油气管道分布及发展展望[J]. 焊管, 2018, 41(3): 1-5, 11.
[2] 王晓香. 我国天然气工业和管线钢管发展展望[J]. 焊管, 2010, 33(3): 5-9.
[3] 范伟. 高矿化度酸性油气集输管道腐蚀规律及控制技术探讨[J]. 安全、健康和环境, 2018(2): 37-40.
[4] 钱进森, 李振东, 刘月发, 等. 低H2S/CO2分压比下油管钢腐蚀产物膜特征及形成机制研究[J]. 焊管, 2015, 38(6): 11-15.
[5] 钱进森, 燕铸, 刘建彬, 等. 微量H2S对油管钢CO2腐蚀行为的影响[J]. 焊管, 2014, 37(12): 39-45.
[6] 赵亚楠, 陈学东, 艾志斌, 等. 304奥氏体不锈钢在H2S+Cl-+CO2+H2O环境下的慢应变速率拉伸腐蚀试验研究[J]. 压力容器, 2016, 33(4): 1-9.
[7] 尹志福, 朱世东, 南蓓蓓, 等. 2205双相不锈钢在CO2-H2S-Cl--H2O环境中的电化学腐蚀行为[J]. 材料保护, 2016, 49(3): 23-26.
[8] 毕宗岳, 丁宝峰, 张峰, 等. 2205/Q235大面积双相不锈钢复合板性能分析[J]. 焊管, 2010, 33(3): 25-28.
[9] DEVENDRANATH R K, THIRUVENGATAM G, SUN- HARSAN S P, et al. Characterization of weld strength and impact toughness in the multi-pass welding of super-duplex stainless steel UNS 32750[J]. Materials and Design, 2014(60): 125-135.
[10] JEMBLIE L, BJAALAND H, NYHUS B, et al. Fracture toughness and hydrogen embrittlement susceptibility on the interface of clad steel pipes with and without a Ni-interlayer[J]. Materials Science & Engineering A, 2017 (685): 87-94.
[11] 刘海璋, 毕宗岳, 杨军, 等. 油气集输送用2205/X65双金属冶金复合管材及焊接工艺[J]. 焊管, 2018(3): 17-23.
[12] 杨世洲, 李春福, 李辉, 等. 2205双相不锈钢在酸性H2S环境下的应力腐蚀行为及开裂机理[J]. 稀有金属材料与工程, 2018(3): 904-909.
[13] 齐新瑞. 2205双相不锈钢焊接接头显微组织调控及变形矫正技术研究[D]. 镇江: 江苏科技大学, 2017.
[14] 杨吉春, 杨文魁, 唐庆余. 氮对SAF2205双相不锈钢组织及力学性能的影响[J]. 中国冶金, 2017(10): 27-33.
[15] 白庆伟, 麻永林, 邢淑清, 等. 焊接HAZ微区转变及晶粒长大规律研究[J]. 湖南大学学报(自科版), 2017, 44(6): 30-36.
[16] 穆宏伟, 刘洁, 白永杰, 等. 焊接热循环对奥氏体不锈钢254SMo组织与性能的影响[J]. 焊接, 2017(12): 23-27.

相似文献/References:

[1]刘海璋,毕宗岳,杨 军,等.油气集输用2205/X65双金属冶金复合管材及焊接工艺[J].焊管,2018,41(3):17.[doi:10.19291/j.cnki.1001-3938.2018.03.004]
 LIU Haizhang,BI Zongyue,et al.2205/X65 Bimetal Metallurgy Composite Pipe and Welding Process for Oil and Gas Gathering and Transferring[J].,2018,41(2):17.[doi:10.19291/j.cnki.1001-3938.2018.03.004]

备注/Memo

备注/Memo:
收稿日期:2018-10-30
基金项目:国家863计划课题“双金属层状结构复合管材技术研究”(项目编号2013AA031303);陕西省科技统筹创新工程计划课题“双金属层状结构复合管研制”(项目编号2014KTDZ01-03-02)。
作者简介:毕宗岳(1962—), 男, 博士, 教授级高工,主要从事油气管材开发及焊接技术研究,发表论文50余篇。
更新日期/Last Update: 2019-03-20