[1]谭 昊,崔 熙,贾 潇,等.中锰钢残留奥氏体稳定性影响因素分析[J].焊管,2019,42(4):54-60.[doi:10.19291/j.cnki.1001-3938.2019.4.011]
 TAN Hao,CUI Xi,JIA Xiao,et al.Analysis of Factors Affecting Stability of Retained Austenite in Medium Manganese Steel[J].,2019,42(4):54-60.[doi:10.19291/j.cnki.1001-3938.2019.4.011]
点击复制

中锰钢残留奥氏体稳定性影响因素分析()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
42
期数:
2019年第4期
页码:
54-60
栏目:
经验交流
出版日期:
2019-04-28

文章信息/Info

Title:
Analysis of Factors Affecting Stability of Retained Austenite
in Medium Manganese Steel
文章编号:
10.19291/j.cnki.1001-3938.2019.4.011
作者:
谭 昊1崔 熙2贾 潇2张 源2 续 健2王 雷1杜 蒙1杜雨婷1
1. 西安石油大学 材料科学与工程学院, 西安 710065;
2. 长庆油田公司第六采气厂, 西安 710021
Author(s):
TAN Hao1 CUI Xi2 JIA Xiao2 ZHANG Yuan2 XU Jian2 WANG Lei1 DU Meng1 DU Yuting1
1. School of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China;
2. No.6 Gas Production Plant of Changqing Oilfield Company, Xi’an 710021, China
关键词:
中锰钢残留奥氏体强化机制稳定性TRIP效应TWIP效应
Keywords:
medium manganese steel retained austenite strengthening mechanism stability TRIP effect TWIP effect
分类号:
TG113.12
DOI:
10.19291/j.cnki.1001-3938.2019.4.011
文献标志码:
A
摘要:
简述了第三代先进高强度中锰钢的发展及研究现状,以及室温下存在的残留奥氏体的含量、分布及稳定性等因素对中锰钢强度与塑性等力学性能的影响机理,并从合金元素、退火方式、奥氏体晶粒尺寸、应变速率与环境温度、奥氏体的位置及与其他相的相互作用等方面分析了影响残留奥氏体稳定性的因素。最后,对第三代先进高强度中锰钢的研究和应用进行了展望,指出中锰钢奥氏体晶粒分布情况对其强塑积的影响、TRIP效应与TWIP效应的协同机制对强塑积的作用值得进一步研究。
Abstract:
This paper described development and research status of the third generation advanced high strength medium manganese steel, the influence of the content distribution and stability of residual austenite on the strength and plasticity of medium manganese steel at room temperature, and the factors affecting the stability of residual austenite were analyzed from alloying element, annealing method, austenite grain size and interactions of strain rate, environmental temperature, austenite position and other phases. Finally, the research and application of the third generation advanced high strength medium manganese steel were prospected, it was pointed out that the effect of austenite grain distribution on the product of strength and ductility of medium manganese steel, and the synergistic mechanism of TRIP effect and TWIP effect on the product of strength and ductility deserved further study.

参考文献/References:

[1] 马鸣图, 易红亮, 路洪洲, 等. 论汽车轻量化[J]. 中国工程科学, 2009,11(9): 20-27.
[2] 唐正友. 含Nb TRIP钢的开发与组织性能研究[D]. 沈阳: 东北大学, 2005.
[3] CURTZE S, KUOKKAIA V T, HOKKA M, et al. Deformation behavior of TRIP and DP steels in tension at different temperatures over a wide range of strain rates[J]. Materials Science and Engineering A, 2009, 57(1-2): 124-131.
[4] WANG L, BENITO J A, CALVO J, et al. Twin-Induced plasticity of an ECAP-processed TWIP steel[J]. Journal of Materials Engineering and Performance, 2017, 26(2): 554-562.
[5] FROMMRYRE G, BRUX U , NEUMANN P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes[J]. ISIJ Int, 2003(43):438-446.
[6] GRASSEL O, KRUGER L, FROMMEYER G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development properties application[J]. Int J Plast, 2000(16): 1391-1409.
[7] CORNETTE D, CUGY P, HILDENBRAND A, et al. Ultra high strength Fe-Mn TWIP steels for automotive safety parts[J]. Revue de Métallurgie, 2005, 15(12): 905-918.
[8] GARCIA M C, CABALLERO F G. Ultra high strength bainitic steels[J]. ISIJ International, 2005, 45(11): 1736-1740.
[9] WANG L, BENITO J A, CALVO J, et al. Equal channel angular pressing of a TWIP steel: microstructure and mechanical response[J]. Journal of Materials Science, 2017,  52(11): 6291-6309.
[10] CURTZE S, KUOKKALA V T, HOKKA M, et al. Deformation behavior of TRIP and DP steels in tension at different temperatures over a wide range of strain rates[J]. Materials Science and Engineering A, 2009, 57(1-2): 124-131.
[11] 王雷, BENITO J A, CALVO J, 等. 晶粒细化对TWIP钢力学性能与织构的影响[J]. 材料热处理学报, 2016, 37(8): 132-138.
[12] MATLOCK D K, Br?覿utigam V E, SPEER J G. Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel[J]. Materials Science Forum, 2003(426-432): 1089-1094.
[13] HU J, DU L X, XU W, et al. Ensuring combination of strength, ductility and toughness in medium-manganese steel through optimization of nano-scale metastable austenite[J]. Materials Characterization, 2018(136): 20-28.
[14] 史文超. TRIP780高强钢动态变形行为的宏微观研究[D]. 上海: 上海交通大学,  2009.
[15] VERCAMMEN S, BLANPAIN B, COOMAN B C, et al. Cold rolling behaviour of an austenitic Fe-30Mn-3Al-3Si TWIP-steel: the importance of deformation twinning[J]. Acta Materialia, 2004(52): 2005-2012.
[16] BOUAZIZ O, GUELTON N. Modelling of TWIP effect on work-hardening[J]. Materials Science and Engineering A, 2001(319-321): 246-249.
[17] SHIEKHELSOUK M N, FAVIER V, CHERKAOUI K I. Modelling the behaviour of polycrystalline austenitic steel with twinning-induced plasticity effect[J]. M. Int J Plast, 2009(25): 105-133.
[18] SHI J, SUN X, WANG M, et al. Enhanced work hardening behavior and mechanical properties in ultrafine-grained steels with large fractioned metastable anusenite[J]. Scripta materialia, 2010, 63(8): 815-818.
[19] AYDIN H, ESSADIQI E, JUNG I H, et al. Development of 3rd generation AHSS with medium Mn content alloying compositions[J]. Materials Science and Engineering A, 2013(564): 501-508.
[20] LEE S, ESTRIN Y, COOMAN B C D. Effect of the strain rate on the TRIP-TWIP transition in austenitic Fe-12 pct Mn-0.6 pct C TWIP steel[J]. Metallurgical and materials transactions A, 2014, 45(2): 717-730.
[21] LEE S,  COOMAN B C D . Tensile behavior of intercritically annealed 10 pct Mn multi-phase steel[J].  Metallurgical and materials transactions A, 2014, 45(2): 709-716.
[22] HONG H, LEE O Y, SONG G H. Effect of Mn addition on the microstructural changes and mechanical properties of C-Mn TRIP steels[J]. Journal of Korean Society Heat Treatment, 2003(16): 205-210.
[23] HAN J, LEE Y K. The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels[J]. Acta Materialia, 2014(67): 354-361.
[24] HAN J, LEE S J, LEE C Y, et al. The size effect of initial martensite constituents onthe microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel[J]. Material Science and Engineering: A,  2015 (633): 9-16.
[25] KWON K H, YI I C, HA Y, et al. Origin of intergranular fracture in martensitic 8 Mn steek at cryogenic temperatures[J]. Scripta Materialia, 2013, 69(5): 420-423.
[26] HONG C M, SHI J, SHENG L Y, et al. Effects of hot-working parameters on microstructural evolution of high nitrogen austenitic stainless steel[J]. Materials and Design, 2011, 32(7): 3711-3717.
[27] 刘春泉, 彭其春, 邓明明,等. 第3代汽车用Mn-Al系中锰钢的研究现状[J]. 钢铁研究学报, 2017, 29(6): 431-440.
[28] LEE S, LEE S J, COOMEN B C D. Reply to comments on Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning[J]. Scripta Materialia, 2012, 66(10): 832-833.
[29] KRIANGYUT Phiu-on. Deformation mechanisms and mechanical properties of hot rolled Fe-Mn-C-(Al)-(Si) austenitic steels[M]. Samutprakan: RWTH Aachen, 2008.
[30] MELEROA E J, VAN DIJK N H, ZHAO L, et al. Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steelsP[J]. Acta Materialia, 2007, 55(20): 6713-6723.
[31] HOSSAIN R, PAHLEVANI F, SAHAJWALLA V. Effect of small addition of Cr on stability of retained austenite in high carbon steel[J]. Materials Characterization, 2017(125): 114-122.
[32] SATO M, MATSUMOTO S, MIYAMOTO G, et al. Microstructure of reverted austenite in Fe-0.3N martensite[J]. Scripta Materialia, 2018(156): 85-89.
[33] FENG Q X, LI L F, YANG W Y, et al. Effect of Nb on the stability of retained austenite in hot-rolled TRIP steels based on dynamic transformation[J]. Materials Science and Engineering A, 2014(603): 169-175.
[34] NAKADA N, MIZUTANI K, TSUCHIYAMA T, et al. Difference in transformation behavior between ferrite and austenite formations in medium manganese steel[J]. Acta Materialia, 2014(65): 251-258.
[35] 李志超,  丁桦,  蔡志辉,  等. 退火时间对中锰热轧TRIP钢组织演变的影响[J]. 东北大学学报, 2015, 36(9): 1256-1259.
[36] FURUKAWA T, HUANG H, MATSUMURA O. Effects of carbon content on mechanical properties of 5%Mn steels exhibiting transformation induced plasticity[J]. Materials Science Technology, 1994(10): 964-970.
[37] YANG H S, BHADESHIA H K D H. Austenite grain size and the martensite-start temperature[J]. Scripta Materialia, 2009,  60(7): 493-495.
[38] LEE S, LEE S J, COOMAN B C D. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning[J]. Scripta Materialia, 2011, 65(3): 225-228.
[39] LEE S, LEE S J, COOMAN B C D. Reply to comments on Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning[J]. Scripta Materialia, 2012, 66(10): 832-833.
[40] MUKHERJEE M, MOHANTY O N, HASHIMOTO S, et al. Strain-induced transformation behaviour of retained austenite and tensile properties of TRIP-aided steels with different matrix microstructure[J]. ISIJ International, 2006, 46(2): 316-324.
[41] TIMOKHINA I B, HODGSON P D, PERELONMA E V. Effect of microstructure on the stability of retained austenite in transformation induced plasticity steels[J]. Metallurgical and Materials Transactions A, 2004, 35(8): 2331-2341.
[42] 胡俊. 冷轧中锰钢组织调控及机理研究[D]. 武汉: 华中科技大学, 2014.
[43] LU K, LU L, SURESH S. Strengthening materials by engineering coherent internal boundaries at the nanoscale[J]. Science, 2009(324): 349-352.
[44] SANSOZ F, LU K, ZHU T, et al. Strengthening and plasticity in nanotwinned metals[J]. MRS bulletin, 2016, 41(4): 292-297.
[45] 齐翔宇, 董营, 胡军, 等. 高强韧低碳中锰钢的弯曲疲劳性能[J]. 东北大学学报, 2018, 39(12): 1712-1716.

备注/Memo

备注/Memo:
收稿日期: 2018-11-20
基金项目: 陕西省教育厅科研计划项目 “梯度纳米结构中锰钢的梯度控制” (项目编号18JK0604); 西安石油大学 “材料科学与工程”省级优势学科资助项目。
作者简介: 谭 昊(1995—), 男, 硕士研究生, 主要从事中锰钢性能与表征研究。
更新日期/Last Update: 2019-05-10