[1]孙磊磊,屈献永,郑 磊.低温管线钢DWTT性能影响因素研究[J].焊管,2020,43(5):1-7.[doi:10.19291/j.cnki.1001-3938.2020.05.001]
 SUN Leilei,QU Xianyong,ZHENG Lei.Research on Influence Factors of DWTT Properties of Low-temperature Pipeline Steel[J].,2020,43(5):1-7.[doi:10.19291/j.cnki.1001-3938.2020.05.001]
点击复制

低温管线钢DWTT性能影响因素研究()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
43
期数:
2020年第5期
页码:
1-7
栏目:
试验与研究
出版日期:
2020-05-28

文章信息/Info

Title:
Research on Influence Factors of DWTT Properties of
Low-temperature Pipeline Steel
文章编号:
10.19291/j.cnki.1001-3938.2020.05.001
作者:
孙磊磊屈献永郑 磊
宝山钢铁股份有限公司 中央研究院,上海 201900
Author(s):
SUN Leilei QU Xianyong ZHENG Lei
Research and Development Institute, Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China
关键词:
管线钢低温韧性DWTT性能
Keywords:
pipeline steel low-temperature toughness DWTT performance
分类号:
TG456.3
DOI:
10.19291/j.cnki.1001-3938.2020.05.001
文献标志码:
A
摘要:
DWTT性能是超低温服役管线钢管产品开发的关键技术难点之一。在实验室冶炼、轧制条件下,设计了5种不同成分的管线钢,分析研究了化学成分、卷取温度、冷却速度等因素对管线钢热轧板卷低温DWTT性能的影响。结果表明,w(C)=0.042%试验钢的DWTT性能显著优于w(C)=0.065%试验钢;添加Ni元素可有效提高试验钢的DWTT性能,并且添加Mo+Ni对珠光体的抑制作用优于添加Cr+Ni元素,可获得更好的DWTT性能;卷取温度从530 ℃降低至450 ℃,可有效细化显微组织,提高DWTT性能,效果比添加Ni元素明显;冷却速度从 18 ℃/s提高到28 ℃/s,亦可有效提高DWTT性能。基于研究结果,成功试制了Φ508 mm×11.13 mm规格的X56钢级低温服役HFW管线钢管,并表现出了优异、稳定的-45 ℃ DWTT性能。
Abstract:
DWTT performance is one of the key technical difficulties in the development of the ultra low-temperature pipeline steel products. Under the conditions of the smelting and rolling in the laboratory, five different compositions of pipeline steel with different compositions were designed. The effects of the chemical composition, coiling temperature and cooling speed on the low-temperature DWTT performance of pipeline steel hot rolled coil were studied. The results show that the DWTT performance of w(C) = 0.042% test steel is significantly better than that of w(C)= 0.065% test steel. The addition of Ni element can effectively improve the DWTT performance of the test steel, and the inhibition effect of Mo+Ni on pearlite is better than that of Cr+Ni element, which can obtain better DWTT performance. When the coiling temperature is reduced from 530 ℃ to 450 ℃, the microstructure can be refined effectively and the DWTT performance can be improved, which is more effective than adding Ni element. The cooling rate is increased from 18 ℃/s to 28 ℃/s, which can also effectively improve the DWTT performance. Based on the research results, the X56 steel grade HFW pipeline steel pipe with the specification of Φ508 mm×11.13 mm in low-temperature service has been successfully trial manufactured, and has shown excellent and stable performance of -45 ℃ DWTT.

参考文献/References:

[1] 郑磊,傅俊岩. 高等级管线钢的发展现状[J]. 钢铁,2006,41(10):1-10.
[2] 付超,司译,李学达,等. 极寒地区油气管线建设研究现状[J]. 焊管,2019(5):1-9.
[3] 李鹤林,李霄,吉玲康,等. 油气管道基于应变的设计及抗大变形管线钢的开发与应用[J]. 焊管,2007,30(5):5-11,105.
[4] 杜伟,李鹤林,王海涛,等. 国内外高性能油气输送管的研发现状[J]. 油气储运,2016(6):577-582.
[5] 高原野. 北极未来选择能源还是生态[J]. 中国石油企业,2012(8):118.
[6] BIRD K J,CHARPENTIER R R,GAUTIER D L,et al. Circum-Arctic resource appraisal:estimates of undiscovered oil and gas north of the Arctic circle[J]. U.S. Geological Survey,Fact Sheet:2008-3049.
[7] GAUTIER D L,BIRD K J,CHARPENTIER R R,et al.Assessment of undiscovered oil and gas in the Arctic[J].Science,2009,324(5931):1175-1179.
[8] HARSEM,EIDE A,HEEN K. Factors influencing future oil and gas prospects in the Arctic[J]. Energy Policy,2011,39(12):8037-8045.
[9] DEGEER D,NESSIM M. Arctic pipeline design considerations[C]//ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. [s.l.]:American Society of Mechanical Engineers,2008:583-590.
[10] 张伟卫,池强. 微观组织对管线钢落锤性能的影响研究[J]. 焊管,2018(12):15-19.
[11] 周民,杜林秀,衣海龙,等. X80 管线钢落锤撕裂性能的影响因素分析[J]. 钢铁研究学报,2009,21(9):33-36.
[12] 苏大雄. 成分对管线钢DWTT性能的影响[J]. 宝钢技术,2016(5):59-65.
[13] 齐殿威.日本JFE公司开发的低温韧性优良的X80电阻焊管线管[J]. 焊管,2010,33(3):67-75.
[14] 缪成亮,尚成嘉,MANI S. 奥氏体变形及冷却速率对低碳贝氏体组织中大角晶界分布的影响[J]. 北京科技大学学报,2012,34(3):289-297.
[15] 杨景红,刘清友,孙冬柏,等. 冷速及变形对X70级管线钢相变及组织的影响[J]. 材料热处理学报,2008,29(5):59-63.

相似文献/References:

[1]李新华,罗金恒,赵新伟,等.高钢级管线钢失效评估曲线研究[J].焊管,2007,30(4):33.[doi:1001-3938(2007)04-0033-03]
 LI Xin-hua,LUO Jin-heng,ZHAO Xin-wei,et al.Research on Failure Assessment Curves of High Grade Pipeline Steel[J].,2007,30(5):33.[doi:1001-3938(2007)04-0033-03]
[2]宫少涛,王爱民,吉玲康,等.X80与X100级管线钢屈服强度Rt 0.5与Rp 0.2的差异性研究[J].焊管,2007,30(5):42.[doi:1001-3938(2007)05-0042-03]
 GONG Shao-tao,WANG Ai-min,JI Ling-kang,et al.Study on Difference Between Yield Strength Rt 0.5 and Rp 0.2 for X80 and X100 Pipelines Steel[J].,2007,30(5):42.[doi:1001-3938(2007)05-0042-03]
[3]刘庆才,李 东,黎剑锋.影响输气管线钢管抗H2S性能主要因素的探讨[J].焊管,2007,30(5):54.[doi:1001-3938(2007)05-0054-05]
 LIU Qing-cai,LI Dong,LI Jian-feng.Key Factors Affecting Sour Service Ability of Welded Pipe and Its Domestic Production[J].,2007,30(5):54.[doi:1001-3938(2007)05-0054-05]
[4]王树人,崔志新.管线钢落锤撕裂试验异常脆性断口分析[J].焊管,2007,30(6):69.[doi:1001-3938(2007)06-0069-03]
 WANG Shu-ren? CUI Zhi-xin.Analysis on Abnormal Brittle Fracture of DWTT for Pipeline Steel[J].,2007,30(5):69.[doi:1001-3938(2007)06-0069-03]
[5]陶 鹏,张 弛,杨志刚,等.高钢级管线钢的组织和力学性能[J].焊管,2008,31(2):19.[doi:1001-3938(2008)02-0019-04]
 TAO Peng,ZHANG Chi,YANG Zhi-gang,et al.The Microstructure and Mechanical Property of X70,X80 and X100 Grade Pipeline Steel[J].,2008,31(5):19.[doi:1001-3938(2008)02-0019-04]
[6]黄明浩,徐 烽,黄国建.影响管线钢屈强比的因素探讨[J].焊管,2008,31(3):20.[doi:1001-3938(2008)03-0020-04]
 HUANG Ming-hao,XU Feng,HUANG Guo-jian.Discussion on Influencing Factors of Yield Ratio for Pipeline Steel[J].,2008,31(5):20.[doi:1001-3938(2008)03-0020-04]
[7]牛 辉,余大涛,高惠临.管线钢焊接热影响区的组织预测[J].焊管,2008,31(3):28.[doi:1001-3938(2008)03-0028-05]
 NU Hui,YU Da-tao,GAO Hui-lin.Structure Forecast of Pipeline Steel Welding Heat Affected Zone[J].,2008,31(5):28.[doi:1001-3938(2008)03-0028-05]
[8]孔君华,郑 琳,关 云,等.西气东输二线工程用18.4 mm厚 X80级热轧板卷生产实践[J].焊管,2008,31(6):50.[doi:1001-3938(2008)06-0050-04]
 KONG Jun-hua,ZHENG Ling,GUAN Yun,et al.Production Experience of X80 Grade Hot Rolled Coil with 18.4 mm Thickness Used〖JZ〗for the Second West to East Gas Pipeline Project[J].,2008,31(5):50.[doi:1001-3938(2008)06-0050-04]
[9]黄国建,张英慧,孔祥磊,等.特厚规格X70和X80级热轧卷板的开发与应用[J].焊管,2009,32(2):17.[doi:1001-3938(2009)02-0017-06]
 HUANG Guo-jian,ZHANG Ying-hui,KONG Xiang-lei,et al.Development and Application of X70 & X80 Grade HRC with Heavy Thickness[J].,2009,32(5):17.[doi:1001-3938(2009)02-0017-06]
[10]杨专钊,李云龙,邓波,等.管线钢拉伸试验中异常屈服强度研究与分析[J].焊管,2009,32(4):51.[doi:1001-3938(2009)04-0051-03]
 YANG Zhuan-zhao,LI Yun-long,DENG Bo,et al.Research and Analysis of Abnormal Yield Strength during Tensile Test of Pipeline Steel[J].,2009,32(5):51.[doi:1001-3938(2009)04-0051-03]
[11]刘文月,任 毅,高 红,等.X70/X80管线钢厚板低温CTOD韧性研究[J].焊管,2016,39(10):10.[doi:DOI: 10.19291/j.cnki.1001-3938.2016.10.003]
 LIU Wenyue,REN Yi,GAO Hong,et al.Low Temperature CTOD Toughness Research of X70/X80 Thick Plates Used for Pipeline Steel[J].,2016,39(5):10.[doi:DOI: 10.19291/j.cnki.1001-3938.2016.10.003]
[12]李利巍,徐进桥,邹 航,等.大输量天然气管道工程用特厚壁X80M热轧板卷的开发[J].焊管,2019,42(7):72.[doi:10.19291/j.cnki.1001-3938.2019.7.008]
 LI Liwei,XU Jinqiao,ZOU Hang,et al.Development of Extra Thick Wall X80M Hot-rolled Coil for Large Transportation Capacity Natural Gas Pipeline Project[J].,2019,42(5):72.[doi:10.19291/j.cnki.1001-3938.2019.7.008]

备注/Memo

备注/Memo:

收稿日期:2020-01-03

作者简介:孙磊磊(1988—),硕士,工程师,主要从事钢铁材料研究工作。

更新日期/Last Update: 2020-06-30