[1]孙 咸.HR3C奥氏体耐热钢焊接接头中的析出相[J].焊管,2021,44(12):7-18.[doi:10.19291/j.cnki.1001-3938.2021.12.002]
 SUN Xian.Precipitates in Welded Joint of HR3C Austenitic Heat Resistant Steel[J].,2021,44(12):7-18.[doi:10.19291/j.cnki.1001-3938.2021.12.002]
点击复制

HR3C奥氏体耐热钢焊接接头中的析出相()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
第44卷
期数:
2021年第12期
页码:
7-18
栏目:
试验与研究
出版日期:
2021-12-28

文章信息/Info

Title:
Precipitates in Welded Joint of HR3C Austenitic Heat Resistant Steel
文章编号:
10.19291/j.cnki.1001-3938.2021.12.002
作者:
孙 咸
太原理工大学 焊接材料研究所,太原 030024
Author(s):
SUN Xian
Institute of Welding Consumables, Taiyuan University of Technology, Taiyuan 030024, China
关键词:
析出相HR3C钢焊接接头高温暴露σ相脆化
Keywords:
precipitated phase welding joint of HR3C steel high temperature exposure sigma phase embrittlement
分类号:
TG113.12;TG457.1
DOI:
10.19291/j.cnki.1001-3938.2021.12.002
文献标志码:
A
摘要:
综述了高温长期暴露后HR3C钢焊接接头中的析出相及其影响。结果表明,HR3C钢接头显微组织主要为奥氏体+析出相(含晶界和晶内),接头各区析出相的种类、形态、数量和分布不尽相同。在高温运行期间,晶界处大量碳元素与铬、铁、钼、镍等元素化合,形成所谓M23C6型碳化物;纯奥氏体中直接析出σ相非常缓慢。 奥氏体钢接头中大规模原子位移,如再结晶前沿的推进或变形,会大大加速σ相转变。高温长期暴露后接头的低塑性与析出相(尤指σ相)之间存在相关性;接头中产生的应力和塑性应变会进一步加速晶界σ相的析出,致使接头的延展性变差而脆化。
Abstract:
The precipitates in welded joint of HR3C steel after long-term exposure to high temperature and their effects were reviewed. The results show that the microstructure of HR3C steel joint is mainly austenite + precipitated phase (including grain boundary and intragranular). The type, morphology, quantity and distribution of precipitates in each area of the joint are different. During high temperature operation, a large number of carbon elements at the grain boundary combine with chromium, iron, molybdenum, nickel and other elements form the so-called M23C6 carbide. Direct precipitation in pure austenite σ phase is very slow. The large-scale atomic displacement in austenitic steel joint, such as the advance or deformation of recrystallization front, will be greatly accelerated σ phase transition. There is correlation between the low plasticity and precipitates of joints after long-term exposure to high temperature (especially σ phase ). The stress and plastic strain generated in the joint will further accelerate the grain boundary σ phase, which leads to poor ductility and embrittlement of the joint.

参考文献/References:

[1] REHOREK J,NAMBURI H K. Basic microstructural characterization of second phases in homogeneous weld joint made of X6CrNiNbN25-20 steel after long-term exposure time at 973 K[J]. ASME J of Nuclear Rad Science. 2021,7(2): 024505.[2] Kuboň Zdeněk, Stejskalová árka, Kander Ladislav. Effect of sigma phase on fracture behavior of steels and weld joints of components in power industry working at supercritical conditions[EB/OL] . [2021-08-15]. http: //dx.doi.org/10.5772/ intechopen.71569.[3] 李彦默,刘晨曦,余黎明,等. 高温时效对S31042钢线性摩擦焊接头组织和力学性能的影响[J]. 金属学报,2018,54(7):981-990. [4] 李太江,刘福广,陈伟武,等. HR3C 钢焊接接头高温时效后的显微组织和力学性能[J]. 金属热处理,2012,37(8):16-19,20. [5] 杜宝帅,刘 睿,张忠文,等. HR3C 钢焊接接头的组织与性能[J]. 金属热处理,2015,40(2):52-55.[6] Golański Grzegorz, Zieliński Adam, Purzyńska Hanna. Precipitation processes in creep-resistant austenitic steels[EB/OL].[2021-08-15] . http://dx.doi.org/10.5772/intechopen.70941.[7] Nippon Steel Corporation. HR3C [EB/OL]. [2021-08-15] . http://www.tubular. nipponsteel.com/product-services/specialty-tube/product/hr3c.[8] 杨富,章应霖,任永宁. 新型耐热钢的焊接[M]. 北京:中国电力出版社,2006.[9] KOTECKI D J , SIEWERT T A. WRC-1992 constitution diagram for stainless steel weld metals: A modification of the WRC-1988 diagram[J]. Welding Journal, 1992, 71(5):171-178.[10] 张学鹏,王萍. HR3C焊接接头700 ℃长期时效后的组织与性能分析[J]. 电焊机,2010,40(2):117-120.[11] 张忠文,李新梅,杜宝帅,等. 650 ℃时效条件下 HR3C 钢焊缝金属组织与韧性[J]. 材料热处理学报,2011(4):104-109.[12] SOURMAIL T. Precipitates in creep resistant austenitic stainless steels[J]. Materials Science and Technology, 2011, 17(1):1-14.[13] PADILHA A F, RIOS P R. Decomposition of austenite in austenitic stainless steels[J] . ISIJ International, 2002, 42(4):325-337.[14] PADILHA A F,LESLEY R,RIOS P R. Stainless steels heat treatment (Chapter 12) [EB/OL] . [2021-08-15]. https://www.researchgate.net/publication/293106894.[15] HANNING FABIAN. Weld cracking in precipitation hardening Ni-based superalloys[D]. Gothenburg,Sweden:Chalmers University of Technology,2018.[16] FOLKHARD E. 不锈钢焊接冶金[M]. 栗卓新,朱学军, 译. 北京:化学工业出版社,2004:102.[17] WEISS B, STICKLER R. Phase instabilities during high temperature exposure of 316 austenitic stainless steel[J]. Acta Metallurgica, 1972, 3(4): 851-866.[18] VITEK J M, DAVID S A. The sigma phase transformation in austenitic stainless steels[J]. Welding Journal, 1986, 65(4):106-111.

相似文献/References:

[1]范 蒙,张贵锋,柴东郎,等.镁锂超轻合金搅拌摩擦焊及其机制的研究[J].焊管,2019,42(11):25.[doi:10.19291/j.cnki.1001-3938.2019.11.005]
 FAN Meng,ZHANG Guifeng,CHAI Donglang,et al.Study on Friction Stir Welding of Mg-Li Ultra-light Alloy and Its Mechanism[J].,2019,42(12):25.[doi:10.19291/j.cnki.1001-3938.2019.11.005]

备注/Memo

备注/Memo:
作者简介:孙 咸,男,教授,主要从事焊接材料及金属焊接性方面的研究和教学工作,对焊接材料软件开发具有丰富经验,获国家科技进步二等奖1项(2000年),省(部)级科技进步一等奖2项,二等奖3项,1992年获国务院颁发的政府特殊津贴,已发表学术论文200余篇。收稿日期:2021-09-10
更新日期/Last Update: 2022-01-04