[1]黄晓辉,符利兵,周云,等.输气钢管内壁椭圆形坑失效原因分析[J].焊管,2023,46(3):35-40.[doi:10.19291/j.cnki.1001-3938.2023.03.007]
 HUANG Xiaohui,FU Libing,ZHOU Yun,et al.Failure Analysis of Oval Pits on Inner Wall of Steel Pipe for Gas Transmission[J].,2023,46(3):35-40.[doi:10.19291/j.cnki.1001-3938.2023.03.007]
点击复制

输气钢管内壁椭圆形坑失效原因分析()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
46
期数:
2023年第3期
页码:
35-40
栏目:
失效分析
出版日期:
2023-03-28

文章信息/Info

Title:
Failure Analysis of Oval Pits on Inner Wall of Steel Pipe for Gas Transmission
文章编号:
10.19291/j.cnki.1001-3938.2023.03.007
作者:
黄晓辉符利兵周云黄晓江芦琳张超乔凌云韦奉
1. 中油国家石油天然气管材工程技术研究中心有限公司,西安 710018;2. 宝鸡石油钢管有限责任公司,陕西宝鸡 721008
Author(s):
HUANG Xiaohui FU Libing ZHOU Yun HUANG Xiaojiang LU Lin ZHANG Chao QIAO Lingyun WEI Feng
1. Chinese National Engineering Research Center for Petroleum and Natural Gas Tubular Goods Co., Ltd., Xi’an 710018, China; 2. Baoji Petroleum Steel Pipe Co., Ltd., Baoji 721008, Shaanxi, China
关键词:
输气钢管腐蚀凹坑失效原电池反应
Keywords:
gas transmission steel pipe corrosion pit failure galvanic cell interaction
分类号:
TG172.3
DOI:
10.19291/j.cnki.1001-3938.2023.03.007
文献标志码:
A
摘要:
为分析某输气用X52QS钢级无缝钢管内壁椭圆形凹坑失效原因,通过力学性能测试、金相检测、化学成分分析、扫描电镜(SEM)、物相(XRD)分析等手段,对该凹坑产生原因进行综合分析。结果发现,凹坑区的C、Cr、Mo、Ti、B等元素含量高于正常区,且偏聚在凹坑区;C、B元素含量超标,化学成分不均导致凹坑区金相组织不均匀,使凹坑区发生微观原电池反应,凹坑区成为阳极被腐蚀而减薄;此外,凹坑内表面的CaCO3和SiO2含量较高,造成凹坑区垢下腐蚀;凹坑区表面膜疏松造成浓差电池,在介质冲刷等共同作用下会加速腐蚀,凹坑区壁厚持续减薄,最终形成更大的椭圆形凹坑。最后对样管最薄凹坑剩余厚度进行计算,发现已无法满足设计压力要求,建议换钢管或者降低设计压力后二次利用。
Abstract:
In order to analyze the failure reason of the oval pit on the inner wall of a X52QS steel seamless steel pipe for gas transmission, the causes of the pit were comprehensively analyzed by means of mechanical property test, metallographic examination, chemical composition analysis, scanning electron microscope (SEM) and phase (XRD) analysis. The results showed that the content of C, Cr, Mo, Ti, B and other elements in the pit area was higher than that in the normal area and concentrated in the pit area. The content of elements C and B exceeds the standard, and the uneven chemical composition leads to the uneven metallographic structure in the pit area, which causes the microscopic galvanic cell reaction in the pit area, and the pit area becomes the anode which is corroded and thinned. In addition, the content of CaCO3and SiO2 on the inner surface of the pit is high, causing corrosion under the scale in the pit area. The loose facial mask on the surface of the pit area causes the concentration cell, which will accelerate the corrosion under the combined action of medium scouring, and the wall thickness of the pit area will continue to decrease, eventually forming a larger oval pit. Finally, the remaining thickness of the thinnest pit of the sample pipe is calculated, and it is found that it cannot meet the design pressure requirements. It is recommended to replace the steel pipe or reduce the design pressure and reuse it.

参考文献/References:

[1]杨道明.金属力学性能与失效分析[M]. 北京:冶金工业出版社,1991.[2]曹用涛.机械工程材料测试手册(力学卷)[M].沈阳:辽宁科学技术出版社,2001.[3]张菁,赵毅,王晓慧,等.塔河油田地面集输管网碳钢管线材质实验研究[J].油气田地面工程,2017,36(6):22-24.[4]宫川宝.天然气长输管道L320钢管腐蚀失效分析[J]. 腐蚀科学与防护技术,2017,29(3):271-274.[5]廖景娱.金属构件失效分析[M].北京:化学工业出版社,2003.[6]高贝,陈永楠,朱丽霞,等.腐蚀减薄对X80钢管机械损伤凹陷过程中应力应变的影响[J]. 热加工工艺,2020,49(4):47-52.[7]陶勇寅,杜则裕,李云涛,等.H2S浓度对国产X70管线钢及其焊接接头应力腐蚀性能的影响[J].焊接学报,2004,25(3):105-108.[8]鲁强,顾宝珊,杨培燕,等.X65输油管及焊缝的腐蚀失效原因[J].腐蚀与防护,2015,36(10):1004-1008.[9]阿荣,赵琳,潘川,等.硼对低合金高强钢大热输入焊缝韧性的影响[J].机械工程学报,2014(24):100-105.[10]李焰,李亚东,杨瑞,等.X80管线钢焊接接头重构及其在NACE溶液中的腐蚀行为[J].中国石油大学学报(自然科学版),2018,42(6):153-160.[11]王丹慧,张振华,李萍,等. Fe2O3H2S腐蚀产物的XPS研究[J].腐蚀科学与防护技,2017,29(3):257-260.[12]王荣.显微组织和热处理对直缝电阻焊管沟槽腐蚀的影响[J].金属学报,2002,38(12):1281-1286.[13]杨壮春,蔡伊扬,朱烨森,等.介质条件对X65管线钢及其焊接接头CO2腐蚀的影响[J].腐蚀与防护,2019,40(10):717-722.[14]龚桂仙,陈士华,蒲邵康,等.钢铁产品缺陷与失效实例分析图谱[M].北京:冶金工业出版社,2012.[15]边云燕,向波,彭磊,等.高含硫气田开发现状及面临的挑战[J].天然气与石油,2007,25(5):3-7.[16]陈严飞,董绍华,敖川,等.含单腐蚀和群腐蚀缺陷高强钢管道失效压力[J].船舶力学,2018,22(1):73-79.[17]中华人民共和国住房和城乡建设部.输气管道工程设计规范:GB 50251—2015[S].北京:中国计划出版社,2015.

相似文献/References:

[1]张振永,郭 彬.腐蚀管道剩余强度的确定及改造措施[J].焊管,2007,30(4):75.[doi:1001-3938(2007)04-0075-04]
 ZHANG Zhen-yong,GUO Bin.Determination of Residual Strength for Corrosion Pipeline and Rebuild Measures[J].,2007,30(3):75.[doi:1001-3938(2007)04-0075-04]
[2]方 炯,孙华峰,孙 丽,等.管道内外防腐材料探讨[J].焊管,2009,32(1):33.[doi:1001-3938(2009)01-0033-04]
 FANG Jiong,SUN Hua-feng,SUN Li,et al.Discussion on Inside and Outside Anticorrosion Materials of Pipelines[J].,2009,32(3):33.[doi:1001-3938(2009)01-0033-04]
[3]孙 丽,徐庆磊,方 炯,等.CO2腐蚀与防护研究[J].焊管,2009,32(3):23.[doi:1001-3938(2009)03-0023-04]
 SUN Li,XU Qing-lei,FANG Jiong,et al.Research of the CO2 Corrosion and Its Prevention[J].,2009,32(3):23.[doi:1001-3938(2009)03-0023-04]
[4]肖国章,高 霞,管磊磊,等.某油井套管腐蚀原因分析[J].焊管,2011,34(8):43.
[5]李霄,石凯,刘彦明,等.连续管焊接工艺及接头性能研究[J].焊管,2012,35(5):15.[doi:1001-3938(2012)05-0015-04]
 LI Xiao,SHI Kai,LIU Yan-ming,et al.Research on Coiled Tubing Butt Welding Process and Properties of Welded Joint[J].,2012,35(3):15.[doi:1001-3938(2012)05-0015-04]
[6]董 瑾.管线钢耐酸性腐蚀的主要影响因素及测试方法[J].焊管,2013,36(11):31.[doi:1001-3938(2013)11-0031-04]
 DONG Jin.Main Influence Factors to Sour Corrosion Resistance of Pipeline Steel and Test Method[J].,2013,36(3):31.[doi:1001-3938(2013)11-0031-04]
[7]宋立新,李美艳,王永兴.一种双相不锈钢焊接接头的组织及腐蚀性能[J].焊管,2014,37(4):26.[doi:1001-3938(2014)04-0026-04]
 SONG Lixin,LI Meiyan,WANG Yongxing.Microstructure and Corrosion Property of Welding Joint of A Duplex Phase Stainless Steel[J].,2014,37(3):26.[doi:1001-3938(2014)04-0026-04]
[8]李雅可,卢胜勇,马立立,等.近中性pH值溶液中X100管线钢应力和氢元素对电化学腐蚀行为的影响[J].焊管,2014,37(4):68.[doi:1001-3938(2014)04-0068-05]
 Edited and Translated by LI Yake,LU Shengyong,MA Lili,et al.Synergistic Effects of Hydrogen and Stress on Corrosion of X100 Pipeline Steel in A Near-neutral pH Solution[J].,2014,37(3):68.[doi:1001-3938(2014)04-0068-05]
[9]程巨强,弥国华,刘志学,等.S32760超级双相不锈钢管材焊接接头组织及腐蚀原因分析[J].焊管,2014,37(5):20.[doi:1001-3938(2014)05-0020-04]
 CHENG Juqiang,MI Guohua,LIU Zhixue,et al.Analysis on Microstructure and Corrosion Reason of S32760 Super Duplex Stainless Steels Pipe Welded Joints[J].,2014,37(3):20.[doi:1001-3938(2014)05-0020-04]
[10]聂向晖,王高峰,赵金兰,等.HFW焊管在NS4及鹰潭土壤模拟溶液中的腐蚀及机理分析[J].焊管,2014,37(7):18.[doi:1001-3938(2014)07-0018-05]
 NIE Xianghui,WANG Gaofeng,ZHAO Jinlan,et al.Corrosion Process and Mechanism Analysis of the HFW Pipe in NS4 and Yingtan Soil Simulated Solution[J].,2014,37(3):18.[doi:1001-3938(2014)07-0018-05]

备注/Memo

备注/Memo:
收稿日期:2023-01-08基金项目:中国石油天然气股份有限公司重大科技项目“超临界二氧化碳长距离管道关键技术研究”(项目编号2021ZZ01-02)。作者简介:黄晓辉(1980—),男,陕西凤翔人,高级工程师,硕士,主要从事油气及新能源管道新产品开发及应用工作。
更新日期/Last Update: 2023-03-23