[1]封辉,朱兴华.不同应力三轴度下电化学充氢对X80管线钢性能影响[J].焊管,2023,46(9):9-13.[doi:10.19291/j.cnki.1001-3938.2023.09.002]
 FENG Hui,ZHU Xinghua.Effect of Electrochemical Hydrogen Charging on Properties of X80 Pipeline Steel under Different Stress Triaxialities[J].,2023,46(9):9-13.[doi:10.19291/j.cnki.1001-3938.2023.09.002]
点击复制

不同应力三轴度下电化学充氢对X80管线钢性能影响()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
46
期数:
2023年第9期
页码:
9-13
栏目:
试验与研究
出版日期:
2023-09-19

文章信息/Info

Title:
Effect of Electrochemical Hydrogen Charging on Properties of X80 Pipeline Steel under Different Stress Triaxialities
文章编号:
10.19291/j.cnki.1001-3938.2023.09.002
作者:
封辉朱兴华
1. 中国石油集团工程材料研究院有限公司,西安 710077; 2. 石油管材及装备材料服役行为与结构安全国家重点实验室,西安 710077; 3. 烟台鲁宝钢管有限责任公司,山东 烟台 264000
Author(s):
FENG Hui ZHU Xinghua
1. CNPC Tubular Goods Research Institute Co., Ltd., Xi’an 710077, China; 2. State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Xi’an 710077, China; 3. Yantai Lubao Steel Pipe Co., Ltd., Yantai 264000, Shandong, China
关键词:
X80管线钢电化学充氢应力三轴度缺口拉伸
Keywords:
X80 pipeline steel electrochemical hydrogen charging test stress triaxiality notch tensile test
分类号:
TG142.1
DOI:
10.19291/j.cnki.1001-3938.2023.09.002
文献标志码:
A
摘要:
采用缺口圆棒拉伸试验、电化学充氢和扫描电镜观察等方法研究了不同应力三轴度下氢对X80管线钢性能影响。结果表明,对于初始应力三轴度相同的X80管线钢,电化学充氢降低了材料的缺口试样抗拉强度和断面收缩率,同时随着充氢时间延长,强度和断面收缩率降低越明显。缺口拉伸试样初始应力三轴度由1.02升高为1.25,材料的缺口试样抗拉强度和断面收缩率降低,当充氢8 h,材料抗拉强度降低幅度由1.3%升高至5.5%;充氢24 h条件下,材料抗拉强度降低幅度随应力三轴度升高,由6.6%升高至9.9%。同时随着应力三轴度不断升高,材料缺口位置应力集中程度越高,氢更容易在材料表面和内部扩散聚集,造成不可逆氢损伤,因而材料的抗拉强度降幅增大。
Abstract:
The influence of hydrogen on the mechanical properties of X80 pipeline steel under different stress triaxialities was studied by notched round bar tensile test, electrochemical hydrogen charging and scanning electron microscopy examination. The results show that for X80 pipeline steel with the same initial stress triaxiality, electrochemical hydrogen charging reduced the notch tensile strength and the reduction of shearing area. The moment the hydrogen charging time has prolonged, the strength and reduction of shearing area has decreased more significantly. The initial stress triaxiality of the notched tensile specimen increased from 1.02 to 1.25, resulting in a decrease in the notched tensile strength and reduction of shearing area of the material. The material’s tensile strength decreases from 1.3% to 5.5% after 8 h hydrogen charging. The decrease in tensile strength of the X80 pipeline steel material increases from 6.6% to 9.9% with the increase of stress triaxiality after 24 h hydrogen charging. The increase in stress triaxiality results in a higher degree of stress concentration at the X80 pipeline steel material notch, making it easier for hydrogen to diffuse and accumulate on the surface and inside the X80 pipeline steel material, causing irreversible hydrogen damage, thus resulting in an increase in the decrease in tensile strength of the material.

参考文献/References:

[1] HARDIE D,CHARLES E, LOPEZ A.Hydrogen embrittlement of high strength pipeline steels[J].Corrossion Science,2006,48(12):4378-4385.[2] 王毅辉,李勇,蒋蓉.中国石油西南油气田公司管道完整性管理研究与实践[J].天然气工业,2013,33(3):78-83.[3] BRIOTTET L,BATISSE R,DE DINECHIN G D,et al.Recom?endations on X80 steel for the design of hydrogen gas trans?ission pipelines[J].International Journal of Hydrogen Energy,2012,37(11):9423-30.[4] 刘玉,李焰,李强.阴极极化对 X80 管线钢在模拟深海条件下氢脆敏感性的影响[J].金属学报,2013,49(9): 1089-1097.[5] 张颖瑞,董超芳,李晓刚.电化学充氢条件下X70管线钢及其焊缝的氢致开裂行为[J].金属学报,2006,42(5): 521-527.[6] 赵颖,王荣.X70管线钢电化学充氢后的力学行为研究[J].中国腐蚀与防护学报,2004(5):38-41.[7] JIN T,CHENG Y.In situ characterization by localized electro?hemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel[J].Corrossion Science,2011,53(2):850-853.[8] 王萍, 陈富强, 石云峰.X80管线钢氢致开裂研究 [J]. 热加工工艺,2013,42(16):208-211.[9] HEJAZI D,HAQ A J,YAZDIPOUR N,et al.Effect of man?anese content and microstructure on the susceptibility of X70 pipeline steel to hydrogen cracking[J].Materials Science & Engineering A,2012(551):40-49.[10] MOHTADI M,SZPUNAR J,RAZAVI S.Hydrogen induced cracking susceptibility in different layers of a hot rolled X70 pipeline steel[J].International Journal of Hydrogen Energy,2013,38(31):13831-13841.[11] 李永德,徐娜,时军波.不同充氢方法对断口颗粒状亮区尺寸的影响[J].材料热处理学报,2015,36(5):77-82.[12] 赵新伟,张广利,张良.外加电位对X80管线钢近中性pH土壤应力腐蚀开裂行为的影响[J].油气储运,2014,33(11):1152-1158.[13] LI Z,HU X,ZHAO M,et al.Effect of prior deformation on internal friction in a Fe-Ni based austenitic alloy[J].Materials Letter,2013(98): 82-85.[14] GUO Z,ZHAO M,LI C,et al.Mechanism of hydrogen embri?tlement in a gamma-prime phase strengthened Fe-Ni based austenitic alloy[J].Materials Science & Engineering A,2012(555): 77-84.[15] ZHANG C,CHENG Y F.Corrosion of welded X100 pipeline steel in a near?eutral pH solution[J].Journal of Materials Engineering & Performance,2010,19(6):834-840.

相似文献/References:

[1]孙宏.西气东输二线用国产X80钢级螺旋埋弧焊管性能分析[J].焊管,2010,33(2):13.[doi:1001-3938(2010)02-0013-04]
 SUN Hong.Analysis on Domestic X80 Grade SAWH Pipe Property Used in the[J].,2010,33(9):13.[doi:1001-3938(2010)02-0013-04]
[2]李立科,郑茂盛,孙利军,等.热处理对X80管线钢组织性能的影响[J].焊管,2010,33(4):18.[doi:1001-3938(2010)04-0018-04]
 LI Li-ke,ZHENG Mao-sheng,SUN Li-jun,et al.The Influence of Heat Treatment on Microstructure Properties of X80 Pipeline Steel[J].,2010,33(9):18.[doi:1001-3938(2010)04-0018-04]
[3]王娜,雷阿利.X80管线钢焊接接头中焊缝的耐蚀性的研究[J].焊管,2010,33(5):24.[doi:1001-3938(2010)05-0024-06]
 WANG Na,LEI A-li.Research on the Corrosion Restistance of X80 Pipeline Steel Welding Joints in Sulfer-containing Medium[J].,2010,33(9):24.[doi:1001-3938(2010)05-0024-06]
[4]张敏,赵鹏康,毕宗岳,等.X80管线钢用气体保护焊丝的研制[J].焊管,2010,33(10):23.[doi:1001-3938(2010)10-0023-06]
 ZHANG Min,ZHAO Peng-kang,BI Zong-yue,et al.Development of Gas-shielded Welding Wire for X80 Pipeline Steel[J].,2010,33(9):23.[doi:1001-3938(2010)10-0023-06]
[5]李根全,肖凡,李志忠,等.螺旋埋弧焊管焊缝韧性[J].焊管,2010,33(8):24.[doi:1001-3938(2010)08-0024-04]
 LI Gen-quan,XIAO Fan,LI Zhi-zhong,et al.Weld Toughness of SAWH Pipes[J].,2010,33(9):24.[doi:1001-3938(2010)08-0024-04]
[6]刘振伟,郭 晖,尚成嘉.高Nb X80管线钢的应变时效研究[J].焊管,2011,34(5):12.
[7]贾改风,梁永昌,王文录,等.邯钢厚规格X80管线钢的研发与应用[J].焊管,2011,34(11):24.[doi:1001-3938(2011)11-0024-06]
 JIA Gai-feng,LIANG Yong-chang,WANG Wen-lu,et al.Development and Application of X80 Pipeline Steel with Heavy Wall Thickness in HanSteel[J].,2011,34(9):24.[doi:1001-3938(2011)11-0024-06]
[8]赵志伟,徐 强,彭立山,等.X80感应加热弯管回火工艺研究[J].焊管,2012,35(1):44.[doi:1001-3938-(2012)01-0044-04]
 ZHAO Zhi-wei,XU Qiang,PENG Li-shan,et al.Study on Tempering Process of X80 Induction Heating Bend[J].,2012,35(9):44.[doi:1001-3938-(2012)01-0044-04]
[9]韩晨.高铌和低铌X80管线钢动态再结晶行为的研究[J].焊管,2012,35(2):10.[doi:1001-3938(2012)02-0010-06]
 HAN Chen.Study on Dynamic Recrystallization Behavior of High-Nb and Low-Nb X80 Pipeline Steel[J].,2012,35(9):10.[doi:1001-3938(2012)02-0010-06]
[10]韩秀林,李国鹏,张丽娜,等.X80直缝埋弧焊管制管前后拉伸性能的变化[J].焊管,2012,35(3):19.[doi:1001-3938(2012)03-0019-05]
 HAN Xiu-lin,LI Guo-peng,ZHANG li-na,et al.Study on the Tensile Property Before and After Forming of X80 SAWL Pipe[J].,2012,35(9):19.[doi:1001-3938(2012)03-0019-05]

备注/Memo

备注/Memo:
收稿日期:2022-09-18基金项目: 中国石油天然气集团公司科学研究与技术开发项目“中长距离管道纯氢/掺氢输送关键技术研究”(项目编号2021DJ5002);陕西省氢能产业重点专项“氢气输送管道应用关键技术研究”(项目编号2021LLRH-09)。作者简介:封辉(1985—),男,高级工程师,现主要从事管线钢组织性能表征研究工作。
更新日期/Last Update: 2023-09-25