[1]何德孚,王晶滢.双相不锈钢管性能控制的新途径——亚稳界分解热处理(下)[J].焊管,2018,41(8):1-13.[doi:10.19291/j.cnki.1001-3938.2018.08.001]
 HE Defu,WANG Jingying.A New Way for Duplex Stainless Steel Pipe Performance Control—Spinodal Decomposition Heat Treatment(Ⅱ)[J].,2018,41(8):1-13.[doi:10.19291/j.cnki.1001-3938.2018.08.001]
点击复制

双相不锈钢管性能控制的新途径——
亚稳界分解热处理(下)
()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
41
期数:
2018年第8期
页码:
1-13
栏目:
行业综述
出版日期:
2018-08-28

文章信息/Info

Title:
A New Way for Duplex Stainless Steel Pipe Performance Control—
Spinodal Decomposition Heat Treatment(Ⅱ)
文章编号:
10.19291/j.cnki.1001-3938.2018.08.001
作者:
何德孚1王晶滢12
1. 上海久立工贸发展有限公司,上海 200135;
2. 浙江德传管业有限公司,浙江 湖州 313103
Author(s):
HE Defu1 WANG Jingying12
1. Shanghai Jiuli Industrial and Trade Development Co., Ltd., Shanghai 200135, China;
2. Zhejiang Detrans Piping Co., Ltd., Huzhou 313103, Zhejiang, China
关键词:
双相不锈钢管高Cr铁素体475 ℃脆化析出(分解)亚稳界分解耐蚀性冷加工
Keywords:
duplex stainless steel pipe high Cr ferrite embrittlement at 475 ℃ precipitation spinodal decomposition corrosion resistance cold working
分类号:
TG151
DOI:
10.19291/j.cnki.1001-3938.2018.08.001
文献标志码:
A
摘要:
475 ℃脆化限定了铁素体不锈钢钢管及双相不锈钢钢管只能在280 ℃以下温度服役,富Cr的α′铁素体析出并最终造成贫Cr的α″铁素体强度和硬度增加,但耐蚀性劣化是公认的事实。然而近期研究揭示,280~500 ℃短时时效并不损害双相不锈钢铁素体区的耐蚀性,这种称为亚稳界分解热处理的工艺可能成为既达到强化又优化耐蚀性的附加热处理方法。简要介绍了高Cr铁素体不锈钢的475 ℃脆化以及析出分解和亚稳界分解的本质区别,同时讨论了双相不锈钢亚稳界分解热处理的原理及其作为一种新型合金制造方法的应用。
Abstract:
Ferrite stainless steel pipe and ferrite-austenite duplex stainless steel pipe could only service under 280 ℃ because of embrittlement at 475 ℃, It was a fact generally recognized that Cr-rich α′-ferrite precipitation finely resulted in increasing strength and hardness and decreasing corrosion resistance of Cr-depleted α″-ferrite. However recent investigation revealed that the short-term aging heat treatments at 280~500 ℃ may not decrease the corrosion resistance of duplex stainless steels ferrite region, and it was called spinodal decomposition heat treatment that would be a new additional treatment method to improve strength and hardness and  optimize corrosion resistance. The essential difference between Cr-rich ferrite  stainless steel embrittlement at 475 ℃, precipitation decomposition and spinodal decomposition were introduced, and the principle of spinodal decomposition and the application as a manufacturing method for new alloys had also been discussed.

参考文献/References:

[1] ASM Specialty Handbook : Stainless Steel[K]. ASMint,1994.
[2] ASM Metal Handbook[K] .2nd edtion. ASMint,1998.
[3] LIPPOLD J C, KETECKI D J. Welding Metallurgy and Weldablility of Stainless Steels[M]. Hoboken:John Wiley & Sons, 2005.
[4] ERICH F. Wdding Metallurgy of Stainless Steels[M]. New Tork: Springer-Verlag Wien, 1987.
[5] ASM Handbook V.4D: Heat Treatment of lrons and Steels [K]. ASMint, 2014.
[6] ASM DESK Handbook : Phase Diagrams for Binary Alloys[K].  2nd edtion.ASMint , 2010.
[7] JENA A K, CHATURVEDI M C. Phase trans for mations in Materials[M]. N.J.:Prentice-Hall lnc,1992.
[8] PORTOR D A, EASTERLING K E, SHERIF M Y. Phase Transformation in Metal and Alloys[M]. 3rd edition.UK: CRC Press , 2009.
[9] 蔡珣. 材料科学与工程基础[M]. 上海:上海交通大学出版社, 2010.
[10] 徐祖耀. 材料相变[M]. 北京:高等教育出版社, 2013.
[11] 林栋樑,郭景坤. 大辞海—材料科学卷[M]. 上海:上海辞书出版社, 2015.
[12] 施郁. 物理学之美: 杨振宁的13项重要科学贡献[J]. 物理, 2014, 43(1): 57-62.
[13] SAHU J K , KRUPP U, GHOSH R. N, et al. Effect of 475 ℃ embrittlement on the mechanical properties of DSS[J]. Materials Science and Engineering A,2009(A508): 1-14.
[14] WENG L , CHEN H R, YANG J R. The low-temperature aging embrittlement in a 2205 DSS[J] . Materials Science and Engineering A, 2004(A379): 119.
[15] STAVARES S M , LOUREIRO A, PARDAL J M , et al. Influence of heat treatment at 475 ℃ and 400 ℃ on the pitting corrosion resistance and sensiti-zation of UNS S32750 and UNS S32760 SDSS[J].Metarials and Corrosion, 2012, 63(4): 522-526.
[16] AI W J, KUEN H C, DONG J J, et al. Short-term spinojal decomposition—its effects on corrosion behavior of a DSS and fea sibity as a strengthening treatment[J]. Metarials and Corrosion, 2017, 68(4): 395-404.
[17] HATTESTRAND M, LARSSON P, CHAI G, et al. Study of decomposition of ferrite in a DSS cold worked and aged at 450~500 ℃[J]. Materials science and Engineering A, 2009(A499): 489-492.
[18] 何德孚,王晶滢. 不锈钢管应用中的低温敏化及其抗敏化性能掌握新识(下)[J]. 钢管,2016, 45(2):67-77.
[19] ASM Hand book, Vol.13A: Corrosion Fundamentals, Testing and Protection[K]. ASMint, 2003.
[20] REVIE R W. Oil and Gas Pipelines: Integrity and Safety Handbook[M]. 2015.
[21] VERLINDEN B, CAHN R W. Thermo-mechanical pro- cessing of metallic materials[D]. Cambridge: University of Cambridge, 2007.
[22] ASM Handbook V.4E: Heat Treatment of Nonferrous alloys[K]. ASMint, 2016.
[23] FEHIM F. Improvements in spinodal alloys from past to present[J]. Materials and Desigh, 2012, 42(10): 131-146.
[24] RAYMOND W, GEDEON M J, FRITZ C. Grensing performance advances in Cu-Ni-Sn spinodal alloys[J].Advanced Materials & Processes, 2013(9): 20-25.
[25] XUE Fei, JI Yanzhou, CHEN Longqing. Theory of strain phase separation and strain spinodal: applications to ferroelastic and ferroelectric systems[J]. Acta Materialia, 2017(133): 147-159.
[26] ASM Handbook of Workability and Process Design[K].  ASMint, 2003.
[27] HOSFORD W F, CADDELL R M. Metal Forming: Mech- anics and Metallurgy[M]. 4th edition. New York: Cambrldge Univ press, 2014.
[28] FOLLANSBEE P S. Foundamental of strength: principls, Experiment, and Applications of an Internal State Variable Constitutive Formulation[M]. USA: TMS Wiley,  2014.
[29] 彭小弟. 新版GB/T 5310《高压锅炉用无缝钢管》国家标准解析[J]. 钢管, 2017, 46(5): 77-82.
[30] PARK C L, GIBBS J W, VOORHEES P W, et al. Coarsening of complex microstructuctres following spinodal decom-    position[J]. Acta Materialia, 2017(132): 13-24.

相似文献/References:

[1]何德孚,王晶滢.双相不锈钢钢管性能控制的新途径——亚稳界分解热处理(上)[J].焊管,2018,41(7):1.[doi:10.19291/j.cnki.1001-3938.2018.07.001]
 HE Defu,WANG Jingying.A New Way for Duplex Stainless Steel Pipe Performance Control—Spinodal Decomposition Heat Treatment(Ⅰ)[J].,2018,41(8):1.[doi:10.19291/j.cnki.1001-3938.2018.07.001]

备注/Memo

备注/Memo:
收稿日期: 2018-03-19
作者简介: 何德孚, 男, 上海交通大学教授, 上海久立焊管研究所所长。
更新日期/Last Update: 2018-09-28