[1]吴宇坤,张帅锋,王 启,等.梯度纳米结构钛管的拉-扭双轴疲劳行为研究[J].焊管,2018,41(12):1-8.[doi:10.19291/j.cnki.1001-3938.2018.12.001]
 WU Yukun,ZHANG Shuaifeng,WANG Qi,et al.Study on Biaxial Fatigue Behavior of the Gradient Nano-structured Titanium Tube[J].,2018,41(12):1-8.[doi:10.19291/j.cnki.1001-3938.2018.12.001]
点击复制

梯度纳米结构钛管的拉-扭双轴疲劳行为研究()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
41
期数:
2018年第12期
页码:
1-8
栏目:
试验与研究
出版日期:
2018-12-28

文章信息/Info

Title:
Study on Biaxial Fatigue Behavior of the Gradient Nano-structured Titanium Tube
文章编号:
10.19291/j.cnki.1001-3938.2018.12.001
作者:
吴宇坤张帅锋王 启孙志杰张斌斌蒋 鹏
洛阳船舶材料研究所,河南 洛阳 471000
Author(s):
WU YukunZHANG ShuaifengWANG QiSUN ZhijieZHANG BinbinJIANG Peng
Luoyang Ship Materials Research Institute,Luoyang 471000,Henan,China
关键词:
钛管梯度纳米结构双轴疲劳表面纳米化处理
Keywords:
titanium tubegradient nano-structurebiaxial fatiguesurface nano-crystallization treatment
分类号:
TG405
DOI:
10.19291/j.cnki.1001-3938.2018.12.001
文献标志码:
A
摘要:
为了对梯度纳米结构钛管的拉-扭双轴疲劳行为进行研究,利用表面纳米化技术制备了梯度纳米结构钛管,并对梯度纳米结构钛管的拉-扭双轴疲劳行为进行了相关试验,通过微观组织观察,对梯度纳米结构钛管的双轴疲劳损伤机制和微观组织演变规律进行了深入分析。试验结果显示,表面纳米化处理可以显著提高钛管的双轴疲劳寿命,为提高航天用钛管装备的服役安全性和可靠性提供理论指导。
Abstract:
In order to study the tension-torsion biaxial fatigue behavior of the gradient nano-structured titanium tubes, the gradient nano-structured pure titanium tubes were prepared by surface nano-crystallization technology, and the tensile-twist biaxial fatigue behavior of gradient nano-structured titanium tubes was tested. The biaxial fatigue damage mechanism and microstructure evolution of gradient nano-structured titanium tubes were analyzed by microstructure observation. The experimental results show that surface nano-crystallization treatment could significantly improve the biaxial fatigue life of titanium tubes, and provide theoretical guidance for improving the service safety and reliability of aerospace titanium tube equipment.

参考文献/References:

[1] GERD L,JAMES C W. Titanium[M]. Berlin:Springer Verlag,2003.
[2] JIANG Y Y,KURATH P. Nonproportional cyclic deformation:critical experiments and analytical modeling[J]. International Journal of Plasticity,1997,13(8-9):743-763.
[3] 卢柯. 梯度纳米结构材料[J]. 金属学报,2015,51(1):1-10.
[4] ROLAND T,RETRAINT D,LU K. Fatigue life improvement through surface nano-structuring of stainless steel by means of surface mechanical attrition treatment[J]. Scripta Mater,2006(54):1949-1954.
[5] HUANG H W,WANG Z B,LU J,et al. Fatigue behaviors of AISI 316L stainless steel with a gradient nano-structured surface layer[J]. Acta Materialia,2015,87(1):150-160.
[6] 肖林,王启,孙巧艳,等. 一种对金属表面进行梯度纳米化的方法:中国,ZL 201310185394. 8[P]. 2015-04-29.
[7] WANG Q,SUN Q Y,XIAO L,et al. Torsion fatigue behavior of pure titanium with a gradient nano-structured surface layer[J]. Materials Science & Engineering A,2016(649):359-368.
[8] LI R H,ZHANG P,ZHANG Z F. Fatigue cracking and fracture behaviors of coarse-grained copper under cyclic tension-compression and torsion loadings[J]. Materials Science and Engineering:A,2013,574(1):113-122.
[9] ZHANG Z F,WU S D,LI Y J,et al. Cyclic deformation and fatigue properties of Al-0.7 wt.% Cu alloy produced by equal channel angular pressing[J]. Materials Science and Engineering:A,2005,412(1-2):279-286.
[10] GOTO M,HAN S Z,YAKUSHIJI T,et al. Formation process of shear bands and protrusions in ultrafine grained copper under cyclic stresses[J]. Script Material,2006,54(12):2101-2106.
[11] SHAN Z W,MISHRA R K,WARREN S A,et al. Mechanical annealing and source-limited deformation in submicrometer-diameter Ni crystals[J]. Nature Materials,2008,7(2):115-119.
[12] HUANG L,LI Q J,SHAN Z W,et al. A new regime for mechanical annealing and strong sample-size strengthening in body centered cubic molybdenum[J]. Nature Commutation,2011,2(11):547-553.
[13] FORSYTH P J. A Two Stage Process of Fatigue Crack Growth[M]. Cranfield:Crack Propagation Symp,1961:76-94.
[14] SURESH S. Fatigue of Material[M]. New York:Cambridge University Press,1991.
[15] KUMAR S,LI X Y,HAQUE A,et al. Is stress concentration relevant for nano-crystalline metals[J]. Nano Lett,2011(11):2510-2516.

相似文献/References:

[1]费 东.钛管钨极氩弧焊焊接接头耐蚀性研究[J].焊管,2017,40(11):28.[doi:10.19291/j.cnki.1001-3938.2017.11.006]
 FEI Dong.Research on Corrosion Resistance of GTAW Welded Joint of Titanium Pipe[J].,2017,40(12):28.[doi:10.19291/j.cnki.1001-3938.2017.11.006]

备注/Memo

备注/Memo:
收稿日期:2018-08-16
基金项目: 国家自然科学青年基金“梯度组织结构Beta钛合金强韧化机制及疲劳损伤行为研究”(项目编号51701189)。
作者简介:吴宇坤(1988—),男,硕士,工程师,目前主要从事海洋工程用钛合金的研发及评价研究。
更新日期/Last Update: 2019-01-15