[1]闫亚丽.含Cr钢油井套管CO2耐蚀性能研究[J].焊管,2019,42(5):30-36.[doi:10.19291/j.cnki.1001-3938.2019.5.005]
 YAN Yali.Research on CO2 Corrosion Resistance of Cr-containing Steel Oil Well Casing[J].,2019,42(5):30-36.[doi:10.19291/j.cnki.1001-3938.2019.5.005]
点击复制

含Cr钢油井套管CO2耐蚀性能研究()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
42
期数:
2019年第5期
页码:
30-36
栏目:
试验与研究
出版日期:
2019-05-28

文章信息/Info

Title:
Research on CO2 Corrosion Resistance of Cr-containing Steel Oil Well Casing
文章编号:
10.19291/j.cnki.1001-3938.2019.5.005
作者:
闫亚丽
西安石油大学 材料科学与工程学院, 西安 710065
Author(s):
YAN Yali
School of Material Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
关键词:
腐蚀套管破损CO2腐蚀J55钢含Cr钢耐蚀性
Keywords:
corrosion casing damage CO2 corrosion J55 steel Cr-containing steel corrosion resistance
分类号:
TG174
DOI:
10.19291/j.cnki.1001-3938.2019.5.005
文献标志码:
A
摘要:
针对某油田油井套管破损严重的问题,对J55钢和3Cr、5Cr、9Cr和13Cr钢在含CO2油井模拟工况环境中的腐蚀速率进行了测试试验。结果表明:在模拟CO2腐蚀环境中,相对于J55钢,含Cr的合金钢腐蚀速率较低,且随着Cr含量的增大,腐蚀速率降低程度增大,Cr钢表面腐蚀产物膜表面Cr的富集程度增加,尤其13Cr最为明显,Cr的腐蚀产物主要为非晶态的Cr(OH)3。评价5种材质的耐蚀性能,为含CO2油井套管的选材提供理论依据。
Abstract:
Aiming at the serious damage of the oil well casing in a certain oilfield, the corrosion rates of J55 steel and 3Cr, 5Cr, 9Cr and 13Cr steel were tested in the simulated working conditions of CO2 containing oil wells. The results showed that in the simulated CO2 corrosion environment, the corrosion rate of chromium-containing alloy steel was lower than that of J55 steel, and the corrosion rate decreased with the increase of Cr content. The degree of Cr enrichment on the surface of Cr steel corrosion products was increased, especially 13Cr was the most obvious. The corrosion products of Cr were mainly amorphous Cr(OH)3. The corrosion resistance of the five kinds of materials was evaluated to provide theoretical basis for the selection of CO2 oil well casing.

参考文献/References:

[1] 李鹤林, 田伟.面向“十二五”的油井管[J]. 钢管, 2012,41(1):1-6.
[2] 杨秀琴. 中国油井管的供求现状与发展[J]. 金属世界, 2012(3):1-10.
[3] LI H Y, LI Y H,WEI D D, et al. Constitutive equation to predict elevated temperature flow stress of V 150 grade oil casing steel[J]. Materials Science & Engineering A, 2011, 530(1): 367-372.
[4] 彭先明. 100V-Cr-Mo石油套管材料组织与性能研究[D].兰州: 兰州理工大学, 2012.
[5] XING Yuekun, ZHANG Guangqing, LI Shiyuan, et al. Identification of similar intervals of wells with casing failure and coring wells and the determination of their geomechanical properties[J]. Petroleum Drilling Techniques, 2017(4): 37-44.
[6] JABBARI N, AMINZADEH F, BARROS F P J D. Hydraulic fracturing and the environment: risk assessment for groundwater contamination from well casing failure[J]. Stochastic Environmental Research & Risk Assessment, 2016(6): 1-16. doi:10.1007/s00477-016-1280-0.
[7] JURASZEK J, JURASZ Z. Microscopic evaluation of a damaged press casing and analysis of failure by finite element method[J]. Materials Science Forum, 2017(891):278-283.
[8] 周宗强. 长庆油田油水井套管腐蚀机理及防腐工艺技术研究[D]. 成都: 西南石油大学, 2009.
[9] 张瑾, 许立宁, 朱金阳, 等. 高温高压CO2腐蚀环境中含Cr低合金钢耐蚀机理的研究进展[J]. 腐蚀与防护,2017,38(6):456-460.
[10] 蔡乾锋, 薛晨, 朱世东, 等. 低铬油套管CO2/H2S腐蚀研究进展[J].表面技术, 2016, 45(8) : 7-13.
[11] 卢宋乐. 含Cr低合金钢CO2 /H2S环境腐蚀产物膜形成及作用机理研究[D]. 北京: 北京科技大学, 2018.
[12] 吕祥鸿, 赵国仙, 张建兵, 等. 低Cr钢在H2S/CO2环境中的腐蚀行为研究[J]. 材料工程, 2009(10): 20-25.
[13] 何连, 刘贤玉, 宋洵成, 等. 温度对三种Cr钢腐蚀行为的影响[J]. 腐蚀与防护, 2017, 38(5): 391-394.
[14] 朱培坷, 邓金根. 3Cr钢和13Cr钢在高矿化度CO2环境中的腐蚀行为[J]. 腐蚀与防护, 2014, 35(12):1221-1225.
[15] 谢涛, 林海, 许杰, 等. 不同材质油套管钢的CO2腐蚀行为[J] . 表面技术, 2017, 46(1): 211-217.

相似文献/References:

[1]张振永,郭 彬.腐蚀管道剩余强度的确定及改造措施[J].焊管,2007,30(4):75.[doi:1001-3938(2007)04-0075-04]
 ZHANG Zhen-yong,GUO Bin.Determination of Residual Strength for Corrosion Pipeline and Rebuild Measures[J].,2007,30(5):75.[doi:1001-3938(2007)04-0075-04]
[2]方 炯,孙华峰,孙 丽,等.管道内外防腐材料探讨[J].焊管,2009,32(1):33.[doi:1001-3938(2009)01-0033-04]
 FANG Jiong,SUN Hua-feng,SUN Li,et al.Discussion on Inside and Outside Anticorrosion Materials of Pipelines[J].,2009,32(5):33.[doi:1001-3938(2009)01-0033-04]
[3]孙 丽,徐庆磊,方 炯,等.CO2腐蚀与防护研究[J].焊管,2009,32(3):23.[doi:1001-3938(2009)03-0023-04]
 SUN Li,XU Qing-lei,FANG Jiong,et al.Research of the CO2 Corrosion and Its Prevention[J].,2009,32(5):23.[doi:1001-3938(2009)03-0023-04]
[4]肖国章,高 霞,管磊磊,等.某油井套管腐蚀原因分析[J].焊管,2011,34(8):43.
[5]李霄,石凯,刘彦明,等.连续管焊接工艺及接头性能研究[J].焊管,2012,35(5):15.[doi:1001-3938(2012)05-0015-04]
 LI Xiao,SHI Kai,LIU Yan-ming,et al.Research on Coiled Tubing Butt Welding Process and Properties of Welded Joint[J].,2012,35(5):15.[doi:1001-3938(2012)05-0015-04]
[6]董 瑾.管线钢耐酸性腐蚀的主要影响因素及测试方法[J].焊管,2013,36(11):31.[doi:1001-3938(2013)11-0031-04]
 DONG Jin.Main Influence Factors to Sour Corrosion Resistance of Pipeline Steel and Test Method[J].,2013,36(5):31.[doi:1001-3938(2013)11-0031-04]
[7]宋立新,李美艳,王永兴.一种双相不锈钢焊接接头的组织及腐蚀性能[J].焊管,2014,37(4):26.[doi:1001-3938(2014)04-0026-04]
 SONG Lixin,LI Meiyan,WANG Yongxing.Microstructure and Corrosion Property of Welding Joint of A Duplex Phase Stainless Steel[J].,2014,37(5):26.[doi:1001-3938(2014)04-0026-04]
[8]李雅可,卢胜勇,马立立,等.近中性pH值溶液中X100管线钢应力和氢元素对电化学腐蚀行为的影响[J].焊管,2014,37(4):68.[doi:1001-3938(2014)04-0068-05]
 Edited and Translated by LI Yake,LU Shengyong,MA Lili,et al.Synergistic Effects of Hydrogen and Stress on Corrosion of X100 Pipeline Steel in A Near-neutral pH Solution[J].,2014,37(5):68.[doi:1001-3938(2014)04-0068-05]
[9]程巨强,弥国华,刘志学,等.S32760超级双相不锈钢管材焊接接头组织及腐蚀原因分析[J].焊管,2014,37(5):20.[doi:1001-3938(2014)05-0020-04]
 CHENG Juqiang,MI Guohua,LIU Zhixue,et al.Analysis on Microstructure and Corrosion Reason of S32760 Super Duplex Stainless Steels Pipe Welded Joints[J].,2014,37(5):20.[doi:1001-3938(2014)05-0020-04]
[10]聂向晖,王高峰,赵金兰,等.HFW焊管在NS4及鹰潭土壤模拟溶液中的腐蚀及机理分析[J].焊管,2014,37(7):18.[doi:1001-3938(2014)07-0018-05]
 NIE Xianghui,WANG Gaofeng,ZHAO Jinlan,et al.Corrosion Process and Mechanism Analysis of the HFW Pipe in NS4 and Yingtan Soil Simulated Solution[J].,2014,37(5):18.[doi:1001-3938(2014)07-0018-05]

备注/Memo

备注/Memo:

收稿日期:2019-01-19

基金项目: 陕西省自然科学基础研究计划“高含H2S/CO2苛刻环境钛合金管材的耐蚀机理研究”(项目编号2016JM5064);陕西省自然科学基金一般项目青年项目“Al掺杂FeMn/TiN纳米涂层的相变行为和强韧化机理研究”(项目编号 2018JQ5108);西安石油大学《材料科学与工程》省级优势学科(YS37020203)。
作者简介:闫亚丽(1993—),女,硕士研究生,研究方向为油气田腐蚀与防护。

更新日期/Last Update: 2019-06-20