[1]邹 航,等.化学成分和控冷工艺对连续油管用钢带状组织的影响研究[J].焊管,2019,42(6):13-18.[doi:10.19291/j.cnki.1001-3938.2019.6.003]
 ZOU Hang,XU Jinqiao,et al.Research of Effect of Chemical Component and Cooling Process on Bended Microstructure for Coiled Tubing[J].,2019,42(6):13-18.[doi:10.19291/j.cnki.1001-3938.2019.6.003]
点击复制

化学成分和控冷工艺对连续油管用钢
带状组织的影响研究
()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
42
期数:
2019年第6期
页码:
13-18
栏目:
试验与研究
出版日期:
2019-06-28

文章信息/Info

Title:
Research of Effect of Chemical Component and Cooling Process on
Bended Microstructure for Coiled Tubing
文章编号:
10.19291/j.cnki.1001-3938.2019.6.003
作者:
邹 航1 2徐进桥1李利巍1岳江波1梅荣利1甄瑞斌1魏 静1
1. 武汉钢铁有限公司,武汉 430080;
2. 武汉科技大学,武汉 430081
Author(s):
ZOU Hang1 2XU Jinqiao1LI Liwei1YUE Jiangbo1MEI Rongli1ZHEN Ruibin1WEI Jing1
1. Wuhan Iron & Steel Co., Ltd., Wuhan 430080, China;
2. Wuhan University of Science and Technology, Wuhan 430081, China
关键词:
连续油管带状组织控冷工艺
Keywords:
coiled tubingbanded microstructurecooling process
分类号:
TG142.1
DOI:
10.19291/j.cnki.1001-3938.2019.6.003
文献标志码:
A
摘要:
为了提高CT80连续油管的抗酸性能,对CT80钢带状组织和微区化学成分偏析进行了分析,研究了带状组织与微区化学成分偏析的对应关系及C含量和控冷工艺对带状组织的影响。结果表明,微区化学成分偏析是导致带状组织形成的根本原因;降低C含量或卷取温度,均可抑制CT80钢带状组织形成;当w(C)低至0.05%、卷取温度低至530 ℃时,带状组织基本消除,CT80钢抗酸性能良好。
Abstract:
In order to improve the acid resistance of CT80 coiled tubing,the banded microstructure and micro-area chemical component segregation of CT80 steel were analyzed, the relationship between banded microstructure and micro-area chemical component segregation and the effects of C content and cooling process on banded microstructure were studied. The results showed that micro-area chemical component segregation was the root cause of the formation of banded microstructure; reduction of C content or coiling temperature could inhibit the formation of CT80 steel banded microstructure; when the C content was as low as 0.05%,  and the coiling temperature as low as 530 ℃,  the banded microstructure was basically eliminated and the acid resistance of CT80 steel was good.

参考文献/References:

[1] 李建军,毕宗岳. CT80连续油管抗HIC性能试验研究[J]. 焊管,2012,35(4):10-14.
[2] 孙娈芬,杜则裕,李桂芝,等. 带状组织对管线钢抗氢诱发开裂(HIC)性能的影响[J]. 焊接技术,2004,33(6):13-14.
[3] PARK G T,KOH S U,JUNG H G,et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel[J]. Corrosion Science,2008,50(7):1867-1871.
[4] CHAWLA K K,RIGSBEE J M,WOODHOUSE J B. Hydrogen-induced cracking in two linepipe steels[J]. Journal of Materials Science,1986,21(11):3777-3782.[5] 彭先华. 不同微观结构管线钢氢致开裂(HIC)行为研究[D]. 武汉:武汉科技大学,2013.
[6] 周琦,季根顺,杨瑞成,等. 管线钢中带状组织与氢致开裂[J]. 兰州理工大学学报,2002,28(2):30-33.
[7] OFFERMAN S E,DIJK N H V,REKVELDT M T,et al. Ferrite/pearlite band formation in hot rolled medium carbon steel[J]. Metal Science Journal,2002,18(3):297-303.
[8] CARRARD M,GREMAUD M,ZIMMERMANN M,et al. About the banded structure in rapidly solidified dendritic and eutectic alloys[J]. Acta Metallurgica et Materialia,1992,40(5):983-996.
[9] KREBS B,GERMAIN L,HAZOTTE A,et al. Banded structure in Dual Phase steels in relation with the austenite-to-ferrite transformation mechanisms[J]. Journal of Materials Science,2011,46(21):7026-7038.
[10] GROSSTERLINDEN R,KAWALLA R,LOTTER U,et al. Formation of pearlitic banded structures in ferritic-pearlitic steels[J]. Steel Research,2016,63(8):331-336.
[11] 倪满森. 连铸坯的中心偏析问题[J]. 连铸,2001(6):24-26.
[12] 梁文,吴润,黄海娥,等. 碳含量对600 MPa级高强钢中心偏析和带状组织的影响[J]. 钢铁钒钛,2018,39(3):154-162.
[13] 冯光宏,李岩,戴蓓蓉,等. 在未再结晶区大压下后加速冷却工艺对钢板带状组织的影响[J]. 钢铁研究学报,1999(6):14-17.
[14] 蔡珍,黄运华,张跃,等. 冷却速度对铁素体-珠光体带状组织的影响机制[J]. 钢铁研究学报,2012,24(6):25-30.
[15] 范建文,谢瑞萍,张维旭,等. 普通C-Mn钢超细晶中厚板的带状组织[J]. 钢铁,2004,39(8):100-104.

相似文献/References:

[1]周建宏,石 凯,卢雪峰,等.国产CT80级连续油管用钢带对接焊焊接方法探讨[J].焊管,2009,32(5):25.[doi:1001-3938(2009)05-0025-03]
 ZHOU Jian-hong,SHI Kai,LU Xue-feng,et al.Discussion on Strip Butt-welding Method of CT80 Grade Coiled Tubing Made in China[J].,2009,32(6):25.[doi:1001-3938(2009)05-0025-03]
[2]王文武,李继红,赵鹏康,等.连续油管环焊温度场及残余应力场数值分析[J].焊管,2011,34(3):18.
[3]张晨鹏,田 鹏,佘芳睿,等.管线钢带状组织有关评定标准的分析探讨[J].焊管,2011,34(6):58.[doi:1001-3938(2011)06-0058-04]
 ZHANG Chen-peng,TIAN Peng,SHE Fang-rui,et al.Discussion on Assessment Standard of Pipeline Steel Banded Structure[J].,2011,34(6):58.[doi:1001-3938(2011)06-0058-04]
[4]秦跃平,张佃平.连续油管在油田洗井作业中的应用[J].焊管,2011,34(9):53.
[5]梁根选,金时麟 编译.连续油管下井作业技术与设备[J].焊管,2011,34(10):72.[doi:1001-3938(2011)10-0072-06]
 Edited and Translated by LIANG Gen-xuan,JIN Shi-lin.Coiled Tubing Technology and Equipment[J].,2011,34(6):72.[doi:1001-3938(2011)10-0072-06]
[6]赵金兰,李记科,李金凤,等.海底管线用大壁厚钢管水压爆破断口分离现象分析[J].焊管,2011,34(11):14.[doi:1001-3938(2011)11-0014-04]
 ZHAO Jin-lan,LI Ji-ke,LI Jin-feng,et al.Analysis on Hydraulic Blasting Fracture Separation of Heavy Wall Thickness Steel Pipe Used in Subsea Pipeline[J].,2011,34(6):14.[doi:1001-3938(2011)11-0014-04]
[7]葛金火.制管用Q345B带钢性能分析[J].焊管,2011,34(12):58.[doi:1001-3938(2011)12-0058-04]
 GE Jin-huo.Performance Analysis on Q345B Steel Strip[J].,2011,34(6):58.[doi:1001-3938(2011)12-0058-04]
[8]李 琳,李继红,余 晗,等.连续油管TIG焊焊接接头最薄弱区工艺-性能神经网络预测模型[J].焊管,2012,35(1):5.[doi:1001-3938(2012)01-0005-03]
 LI Lin,LI Ji-hong,YU Han,et al.The Neural Network Prediction Model of Process-property in the Weakest Area of Coiled Tubing TIG Welded Joint[J].,2012,35(6):5.[doi:1001-3938(2012)01-0005-03]
[9]罗 鹏,秦跃平,陈 锐,等.体积压裂与速度管柱排液复合技术的应用[J].焊管,2012,35(1):29.[doi:1001-3938(2012)01-0029-04]
 LUO Peng,QIN Yue-ping,CHEN Rui,et al.Application of Volume Fracturing and Velocity String Discharging Fluid Composite Technology[J].,2012,35(6):29.[doi:1001-3938(2012)01-0029-04]
[10]李继红,李 琳,赵鹏康,等.连续油管直缝高频焊热影响区最薄弱区硬度的神经网络预测[J].焊管,2012,35(7):5.[doi:1001-3938(2012)07-0005-04]
 LI Ji-hong,LI Lin,ZHAO Peng-kang,et al.The Neural Network Prediction of Hardness in the Weakest Area of Coiled Tubing in HFW HAZ[J].,2012,35(6):5.[doi:1001-3938(2012)07-0005-04]

备注/Memo

备注/Memo:

收稿日期:2019-02-18

基金项目:湖北省中央引导地方科技发展专项“海洋耐腐蚀高强度管线钢制造技术创新平台”(项目编号2018ZYYD026)。
作者简介:邹   航(1987—),男,武钢有限技术中心热轧所研究员,主要从事管线钢系列产品的研发。

更新日期/Last Update: 2019-07-02