[1]毕宗岳.新一代大输量油气管材制造关键技术研究进展[J].焊管,2019,42(7):10-25.[doi:10.19291/j.cnki.1001-3938.2019.7.002]
 BI Zongyue,Key Technologies Research for New Generation Large Transportation Capacity Oil and Gas Pipeline Manufacturing[J].,2019,42(7):10-25.[doi:10.19291/j.cnki.1001-3938.2019.7.002]
点击复制

新一代大输量油气管材制造关键技术研究进展()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
42
期数:
2019年第7期
页码:
10-25
栏目:
会议专辑
出版日期:
2019-07-28

文章信息/Info

Title:
Key Technologies Research for New Generation Large Transportation Capacity
Oil and Gas Pipeline Manufacturing
文章编号:
10.19291/j.cnki.1001-3938.2019.7.002
作者:
毕宗岳1 2
1. 国家石油天然气管材工程技术研究中心, 陕西 宝鸡 721008;
2. 宝鸡石油钢管有限责任公司 钢管研究院, 陕西 宝鸡 721008
Author(s):
BI Zongyue 1 2
1. Chinese National Engineering Technology Research Center for Petroleum and Natural Gas Tubular Goods, Baoji 721008, Shaanxi, China;
2. Steel Pipe Research Institute of Baoji Petroleum Steel Pipe Co., Ltd., Baoji 721008, Shaanxi, China
关键词:
X80钢埋弧焊管大输量焊接性残余应力
Keywords:
X80 steel submerged arc welded pipe large transportation capacity weld properties residual stress
分类号:
TG113.25
DOI:
10.19291/j.cnki.1001-3938.2019.7.002
文献标志码:
A
摘要:
针对目前大输量油气管道建设的需要,分析了新一代大输量油气管道用X80钢级大直径、厚壁埋弧焊管制造及应用的几个热点问题和关键技术。主要包括:基于良好焊接性的管材合金成分设计;X80钢级厚壁管线钢低温韧性及DWTT控制;厚壁管材多丝埋弧焊焊缝及热影响区韧性控制技术;大直径、厚壁X80埋弧焊管残余应力控制以及适合于现场施工自动焊的管端几何尺寸高精度控制技术等。旨在为我国X80钢级大直径油气输送管材工程化生产和超大输量管线建设提供支持和参考。
Abstract:
In terms of the need of the large transportation capacity oil and gas pipelines construction, some hot issues and key technologies of the manufacturing and application of X80 grade large-diameter and thick-wall submerged arc welded pipes are analyzed. It includes the pipe alloy composition design based on the good welding properties, X80 thick-walled pipeline steel low temperature toughness and DWTT control, the multi-wire submerged arc welding weld and heat affected zone toughness control technology, the large diameter, thick-walled X80 submerged arc welding pipe residual stress control and the high precision control technology of pipe end geometry suitable for field construction automatic welding, which provides support for the engineering production of X80 large diameter oil and gas pipelines and the construction of super large capacity pipelines in China.

参考文献/References:

[1] NOURPANAH N, TAHERI F. A design equation for evaluation of strain concentration factor in concrete coated X65 pipelines[J]. Marine Structurcs, 2009(22): 758-769.
[2] NIU Jing, QI Lihua, LIU Yinglai, et al. Tempering microstructure and mechanical properties of pipeline steel X80[J]. Transactions of Nonferrous Metals Society of China, 2009(19): 573-578.
[3] QIAO Guiying, XIAO Furen, ZHANG Bing, et al. Effects of contents of Nb and C on hot deformation behaviors of high Nb X80 pipeline steels[J]. Transactions of Nonferrous Metals Society of China, 2009(19): 1395-1399.
[4] LIU Qingyou, SUN Xinjun, JIA Shujun, et al. Austenitization behaviors of X80 pipeline steel with high Nb and trace Ti treatment[J]. Journal of Iron and Steel Research International, 2009, 16(6): 58-62.
[5] 何滔, 郭周明. 中国天然气供需趋势及进口促进策略研究[J]. 宏观经济研究, 2014 (8): 26-31.
[6] 高鹏, 高振宇, 杜东, 等.  2017年中国油气管道行业发展及展望[J]. 国际石油经济, 2018, 26(3): 21-27.
[7] 高惠临. 管道工程面临的挑战与管线钢的发展趋势[J]. 焊管, 2010, 33(10): 5-18.
[8] 高慧临. 管线钢与管线钢管[M]. 北京: 中国石化出版社, 2012.
[9] DEMOFONTI G, MANNUCCI G, HILLEBRAND H G, et al. Evaluation of the suitability of X100 steel pipes for high pressure gas transportation pipelines by full scale tests[C] // Proceedings of IPC 2004 International Pipeline Conference. Calgary, Alberta, Canada: [s.n.], 2004: 1-8.
[10] YOO J Y, AHN S S, SEO D H, et al. New development of high grade X80 to X120 pipeline steels[J]. Materials and Manufacturing Processes, 2011, 26(1): 154-160.
[11] 郑磊, 傅俊岩. 高等级管线钢的发展现状[J]. 钢铁, 2006, 41(10): 1-10.
[12] 杨柳青, 王晓香, 张永清. 我国新一代超大输量管线钢开发及环焊技术的发展[N]. 世界金属导报, 2017-08-29(B08).
[13] 孙宪进, 石艾来, 许峰. 厚规格抗HIC X65MS海底管线用钢的研发[J]. 特钢技术, 2016, 22(88): 22-26.
[14] 丁文华, 张海, 李少坡, 等. 深海大壁厚 X65MS海底管线钢关键技术研究[C]//第十一届中国钢铁年会论文集. 北京: 冶金工业出版社, 2017: 1-4.
[15] 毕宗岳, 杨军, 牛辉, 等. X90高强管线钢母材及焊缝的冲击韧性[J]. 材料热处理学报, 2017, 38(10): 72-79.
[16] 毕宗岳, 杨军, 牛辉, 黄晓江. X90管线钢管埋弧焊缝组织与性能分析[J]. 焊接学报, 2018, 39(10): 35-40.
[17] YANG Fengping, HUO Chunyong, LUO Jinheng, et al. Crack propagation and arrest simulation of X90 gas pipe[J]. International Journal of Pressure Vessels and Piping, 2017(14): 120-131.
[18] 夏佃秀, 王学林, 李秀程, 等. X90级别第三代管线钢的力学性能与组织特征[J]. 金属学报, 2013, 49(3): 271-276.
[19] WANG X, LI X, WU S, et al. Effect of austenitic State on the multi-phase control in X90 pipeline steel with high Nb content[J]. Materials Today: Proceedings, 2015 (7): 1-6.
[20] ZHANG J M, HUO C Y, MA Q R, et al. NbC-TiN co-precipitation behavior and mechanical properties of X90 pipeline steels by critical-temperature rolling process[J]. International Journal of Pressure Vessels and Piping, 2018(15): 29-33.
[21] 张海, 李少坡, 丁文华. X90高强度管线钢的组织与性能[J]. 金属热处理, 2017, 42(2): 25-28
[22] 陈楠, 孙志刚, 李建一, 等. X90钢级大直径螺旋埋弧焊管的研制[J]. 焊管, 2017, 40(4): 17-22
[23] LI Yang, MENG Li, JI Lingkang, et al. Microstructure and deformation mechanics of X100 line pipe steel[J]. Journal of Iron and Steel Research, 2011(18): 255-261.
[24] XU Xueli, ZHAO Ke, ZHAO Di, et al. Process control for structure of martensite/austenite islands of 15.3 mm X100 pipeline steel in BX steel[J]. Journal of Iron and Steel Research, 2011(18): 487-491.
[25] 毕宗岳, 张骁勇, 李逵, 等. 不同缺口类型X100钢管的韧性特征及断裂规律[J]. 天然气工业, 2014, 34(6): 111-116.
[26] 毕宗岳, 杨军, 牛靖, 等. X100高强管线钢焊接接头的断裂韧性[J]. 金属学报, 2013, 49(5): 576-582.
[27] LEI Xuanwei. Weldability of ultra-high strengh pipeline steel X120[D]. Wuhan: Wuhan University of Science and Technology, 2012.
[28] 李鹤林. 油气输送钢管的发展动向与展望[J]. 焊管, 2004, 27(6): 1-10.
[29] 安守勇. 管线钢DWTT性能厚度效应的影响因素分析[J]. 宽厚板, 2011, 17(4): 8-11.
[30] DUAN Linna, CHEN Yu, LIU Qingyou, et al. Microstructures and mechanical properties of X100 pipeline steel strip[J]. Journal of Iron and Steel Research, International, 2014, 21(2): 227-232.
[31] 张继明, 吉玲康, 霍春勇, 等. X90/X100管线钢与钢管显微组织鉴定图谱[M]. 西安: 陕西科学技术出版社,  2017.
[32] SHA Qingyun, LI Dahang, HUANG Guojian, et al. Separation occurring during the drop weight tear test of thick-walled X80 pipeline steels[J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(8):741-747.
[33] 刘文月, 任毅, 张帅, 等. 提高管线钢DWTT断口剪切面积的途径[J]. 上海金属, 2017, 39(6): 81-87.
[34] 马鸣图. 金属合金中的Bauschinger效应[J]. 机械工程材料, 1986(2): 15-21.
[35] 杨峰, 苏大雄, 张文龙. 冷成型对低碳微合金钢拉伸行为及性能的影响[J]. 宝钢技术, 2010 (5): 52-57.
[36] 吴金辉, 李云龙, 王长安, 等. 制管预应变对管线钢拉伸性能的影响[J]. 焊管, 2011, 34(3): 33-37.
[37] 陈小伟, 张远生, 王旭, 等. X80钢制管前后强韧性变化规律研究[J]. 焊管, 2013, 36(2): 23-28.
[38] 毕宗岳. 管线钢管焊接技术[M]. 北京: 石油工业出版社, 2013.
[39] MEINA A, FOURLARISB G, CROWTHERC D, et al. The influence of aluminum on the ferrite formation and microstructural development in hot rolled dual-phase steel[J]. Mater Charact,2012(6):69-78.
[40] 于磊, 王红鸿, 汪兴隆. 铝对大线能量焊接条件下HSLA焊接热影响区粗晶区M-A组元及冲击韧性的影响[J]. 电焊机, 2014,  44(11): 69-72.
[41] KIANI-RASHID A R. Effect of aluminum on stability of retained austenite in bainitic malleable cast iron[J]. Metal Science and Heat Treatment, 2011(5): 322-325.
[42] CHEN JH, KIKUTA Y, ARAKI T, et al. Micro-fracture behaviour induced by MA constituent(island martensite) in simulated welding heat affected zone of HT80 high strength low alloyed steel[J]. Acta Metall, 1984(32):1779-1788.
[43] LAMBER P A, GOURGUES A F, BESSON J, et al. Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel[J]. Metall Mater Trans A, 2004(35A):1039-1053.
[44] 李学达, 尚成嘉, 韩昌柴, 等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响[J]. 金属学报, 2016, 52(9): 1025-1035.
[45] 李学达. 第三代管线钢的焊接性能研究[D]. 北京: 北京科技大学, 2015.
[46] YANG Y, SHANG C J, NIE W J. Investigation on the crystallography of the transformation products of reverted austenite in intercritically reheated coarse grained heat affected zone[J]. Materials Design, 2013(43): 485-491. [47] ZHU Z X, KUZMIKOVA L, LI H J, et al. Effect of inter-critically reheating temperature on microstructure and properties of simulated inter-critically reheated coarse grained heat affected zone in X70 steel[J]. Materials Science and Engineering A, 2014(605): 8-13.
[48] 孙宏. 高强度管线钢力学性能和冶金特性的最新进展[J]. 焊管, 2017, 40(9): 62-68.
[49] 王佳夫, 林清华, 漆世泽, 等. 冷却速度对高强度低合金钢组织和性能的影响[J]. 钢铁研究学报, 2004, 16(5): 51-53.
[50] 谭娟, 王俊, 高海燕, 等. 高强钢合金化热镀锌研究进展[J]. 材料导报, 2008, 22(2): 64-67.
[51] 李必文, 陶文辉, 殷立洪. 钢管静水压试验端部密封形式的应用探讨[J]. 钢管, 2008, 37(2): 61-64.
[52] 吴忧, 袁志善, 刘志强, 等. X80级管线钢管板状及圆棒试样屈服强度差异分析[J]. 焊管, 2008, 31(3): 73-75.
[53] 孙宏, 田鹏, 王晓香. X80钢级螺旋焊钢管力学性能研究[J]. 压力容器, 2009, 26(4): 1-5.
[54] 熊庆人, 李霄, 霍春勇, 等. X80钢大口径螺旋焊管的残余应力[J]. 机械工程材料, 2011, 35(10): 4-7.
[55] 袁发荣, 伍尚礼. 残余应力测试和计算[M]. 长沙: 湖南大学出版社, 1987.

相似文献/References:

[1]许晓锋,李为卫,徐婷.通用焊接检验尺测量埋弧焊管焊缝余高的修正[J].焊管,2009,32(7):54.[doi:1001-3938(2009)07-0054-04]
 XU Xiao-feng,LI Wei-wei,XU Ting.Amendment to the Weld Reinforcement Measurement of SAW Pipe with General Welding Measurement Ruler[J].,2009,32(7):54.[doi:1001-3938(2009)07-0054-04]
[2]李珂,王自信,丁成飞.X80螺旋埋弧焊管管体强度影响因素分析[J].焊管,2010,33(4):22.[doi:1001-3938(2010)04-0022-04]
 LI Ke,WANG Zi-xin,DING Cheng-fei.Effect Factor Analysis on X80 SAWH Pipe Body Strength[J].,2010,33(7):22.[doi:1001-3938(2010)04-0022-04]
[3]张晓强.埋弧焊管弯曲试验开裂原因分析[J].焊管,2010,33(6):58.[doi:1001-3938(2010)06-0058-02]
 ZHANG Xiao-qiang.Cracking Reason Analysis on SAWH Pipe Bend Test[J].,2010,33(7):58.[doi:1001-3938(2010)06-0058-02]
[4]韩新利,李为卫,马小芳,等.国外直缝埋弧焊管先进制造及质量检测技术[J].焊管,2010,33(9):29.[doi:1001-3938(2010)09-0029-05]
 HAN Xin-li,LI Wei-wei,MA Xiao-fang,et al.Advanced Technologies of Manufacture and Inspection for Overseas SAWL Linepipe[J].,2010,33(7):29.[doi:1001-3938(2010)09-0029-05]
[5]郑茂盛,李立科,赵 青,等.热处理工艺对X80管线钢耐腐蚀性能的影响[J].焊管,2010,33(11):12.[doi:1001-3938(2010)11-0012-06]
 ZHENG Mao-sheng,LI Li-ke,ZHAO Qing,et al.Influence of Heat Treatment on Corrosive Resistance of X80 Pipeline Steel[J].,2010,33(7):12.[doi:1001-3938(2010)11-0012-06]
[6]牛靖,刘迎来,张骁勇,等.X80钢的热处理组织和性能研究[J].焊管,2011,34(6):14.[doi:1001-3938(2011)06-0014-06]
 NIU Jing,LIU Ying-lai,ZHANG Xiao-yong,et al.Study on heat treatment microstructure and mechanical properties of pipeline steel X80[J].,2011,34(7):14.[doi:1001-3938(2011)06-0014-06]
[7]桂光正.焊缝形貌对埋弧焊缝自动超声波探伤结果的影响分析[J].焊管,2011,34(6):54.[doi:1001-3938(2011)06-0054-04]
 GUI Guang-zheng.Analysis on weld seam appearance affect Submerged arc weld seam automatic ultrasonic testing result[J].,2011,34(7):54.[doi:1001-3938(2011)06-0054-04]
[8]王 晨,任国庆.埋弧焊管超声波探伤标准反射体的选择[J].焊管,2011,34(11):58.[doi:1001-3938(2011)11-0058-04]
 WANG Chen,REN Guo-qing.Standard Reflector Selection of Submerged Arc Welded Pipe Ultrasonic Testing (UT)[J].,2011,34(7):58.[doi:1001-3938(2011)11-0058-04]
[9]黄卫锋,钱伟方,王治国.UOE焊管埋弧焊焊接过程变形仿真研究[J].焊管,2011,34(12):12.[doi:1001-3938(2011)12-0012-05]
 HUANG Wei-feng,QIAN Wei-fang,WANG Zhi-guo.Simulation Research on UOE Pipe Deformation During Submerged-arc Welding[J].,2011,34(7):12.[doi:1001-3938(2011)12-0012-05]
[10]张 君,牛 辉.X100管线钢冷裂纹敏感性研究[J].焊管,2011,34(12):22.[doi:1001-3938(2011)12-0022-05]
 ZHANG Jun,NIU Hui.Study on Cold Cracking Sensitivity of X100 Grade Pipeline Steel[J].,2011,34(7):22.[doi:1001-3938(2011)12-0022-05]

备注/Memo

备注/Memo:

收稿日期:2019-02-14
修改稿收稿日期:2019-05-05

基金项目: 国家重点研发计划项目“低温高压服役条件下高强度管线用钢—低温X80钢管制造及应用技术研究”(项目编号2017YFB0304904);陕西省科技重大专项课题“-45 ℃低温环境用埋弧焊管关键技术研究”(项目编号2018ZDXM-GY-122)。
作者简介:毕宗岳(1962—),男, 博士,教授级高工,主要从事油气管材开发及焊接技术研究。

更新日期/Last Update: 2019-08-16