[1]刘清友,等.高钢级厚壁管线钢低温断裂韧性控制技术研究[J].焊管,2019,42(7):39-47,54.[doi:10.19291/j.cnki.1001-3938.2019.7.004]
 LIU Qingyou,JIA Shujun,et al.Research on Controlled Technology of Low Temperature Fracture Toughness on High-grade Thick-wall Pipeline Steels[J].,2019,42(7):39-47,54.[doi:10.19291/j.cnki.1001-3938.2019.7.004]
点击复制

高钢级厚壁管线钢低温断裂韧性控制技术研究()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
42
期数:
2019年第7期
页码:
39-47,54
栏目:
会议专辑
出版日期:
2019-07-28

文章信息/Info

Title:
Research on Controlled Technology of Low Temperature Fracture Toughness on
 High-grade Thick-wall Pipeline Steels
文章编号:
10.19291/j.cnki.1001-3938.2019.7.004
作者:
刘清友1 2贾书君1任 毅2
1. 钢铁研究总院 工程用钢所, 北京 100081;
2. 海洋装备用金属材料及其应用国家重点实验室, 辽宁 鞍山 114000
Author(s):
LIU Qingyou 1 2 JIA Shujun 1 REN Yi 2
1. Institute of Engineering Steels, Central Iron and Steel Research Institute, Beijing 100081, China;
2. State Key Laboratory of Metal Material and application for Marine Equipment, Anshan 114000, Liaoning, China
关键词:
管线钢厚壁低温DWTT断裂韧性奥氏体晶粒尺寸马奥岛
Keywords:
pipeline steel thick-wall low-temperature DWTT fracture toughness austenite grain size M/A constituent
分类号:
TG406
DOI:
10.19291/j.cnki.1001-3938.2019.7.004
文献标志码:
A
摘要:
针对厚规格X80管线钢低温断裂韧性控制难题,从理论层面揭示了DWTT断裂韧性的影响机制,并通过实验室轧钢试验和工业试验证实了相变前奥氏体晶粒尺寸和室温组织中的马奥岛是影响厚规格X80管线钢DWTT性能的两大主要因素。借助热模拟试验研究得出了细化奥氏体晶粒尺寸和马奥岛的主要技术措施。结果表明,尽量避免粗轧高温区在5%~8%变形、适当提高Nb含量、提高粗轧最后两道次变形量和缩短间隔时间,可以使奥氏体再结晶晶粒尺寸控制在20 μm以下;适当降低终轧温度、提高冷却速率、选择合理的终冷温度,可以将组织中马奥岛体积分数降低到10%以下,平均颗粒尺寸减小到1 μm以下。
Abstract:
This research focuses on the DWTT fracture toughness control problem of large diameter and thick gauge X80 pipeline steel and reveals the influence mechanism of DWTT fracture toughness in theoretically level. The austenite grain size before transformation and the M/A constituent in the room temperature are the two main factors to influence the performance of DWTT property of the thick gauge X80 pipeline steel, which have been proven by laboratory rolling experiments and industrial experiments. The main technical measures to refine the austenite grain size and martensite-austenite constituent are studied by means of thermal simulation experiments. The results show that by avoiding the deformation at 5%~8% deformation during rough rolling at high temperature zone, increasing the Nb content properly, increasing the last two-pass deformations of the rough rolling and shortening interval time are effective ways to control the recrystallized grain size of austenite below 20 μm; by decreasing the final roll temperature properly,increasing the cooling rate,and selecting an appropriate final cooling temperature can reduce the volume fraction of M/A constituent under 10% with average grain size below 1 μm.

参考文献/References:

[1] 刘清梅, 杨学梅, 赵谨, 等. 中国管道建设情况及管道用钢发展趋势[J]. 上海金属, 2014, 36(4): 34-37.
[2] 冯耀荣, 霍春勇, 吉玲康, 等. 我国高钢级管线钢和钢管应用基础研究进展及展望[J]. 石油科学通报, 2016, 1(1): 143-153.
[3] 安守勇. 管线钢DWTT 性能厚度效应的影响因素分析[J]. 宽厚板, 2011, 17(4): 8-11.
[4] 高惠临. 管线钢与管线钢管[M]. 北京: 中国石化出版社, 2012.
[5] 贾书君, 刘清友, 李拔. EBSD技术在厚规格管线钢DWTT研究中的应用[J]. 金属热处理, 2016, 41(4):197-200.
[6] 王吉满. 低碳贝氏体钢组织及强韧性机制研究[D]. 昆明: 昆明理工大学, 2009.
[7] 贾书君, 刘清友, 李拔. 厚壁X70管线钢的组织和性能[J]. 材料热处理学报, 2016, 37(4): 129-134.
[8] 杨景红, 低碳高铌管线钢组织细化的控制研究[D]. 北京: 北京科技大学, 2008.
[9] HUANG K, LOGE R E. A review of dynamic recrystallization phenomena in metallic materials[J]. Materials and Design, 2016, 111 (5): 548-574.
[10] 田玉伟, 苏崇涛. 成分偏析对厚规格X65石油管线钢DWTT性能影响的研究[J]. 冶金分析, 2006, 26(10):229-232.
[11] 张行刚. X80管线钢热变形过程中再结晶行为的研究[D]. 包头: 内蒙古科技大学, 2010.
[12] LIU Q Y, SUN S J, JIA S J, et al. Austenitization behaviors of X80 pipeline steel with high Nb and trace Ti treatment[J]. Journal of Iron and Steel Research, International, 2009, 16(6): 58-62.
[13] YANG J H, LIU Q Y, SUN D B, et al. Recrystallization behavior of deformed austenite in a high strength microalloyed pipeline steel[J]. Journal of Iron and Steel Research, International, 2009, 16(1): 75-80.
[14] NAZMUL H, ABDELBASET R H M, JAMES G, et al. Influence of martensite-austenite(MA) on impact toughness of X80 line pipe steels[J]. Materials Science & Engineering A, 2016, 662(26): 481-491.
[15] 闫立超, 余伟, 唐荻, 等. 终冷温度对高强度管线钢屈强比的影响[J]. 南方金属, 2008, 161 (4): 8-11.

相似文献/References:

[1]李新华,罗金恒,赵新伟,等.高钢级管线钢失效评估曲线研究[J].焊管,2007,30(4):33.[doi:1001-3938(2007)04-0033-03]
 LI Xin-hua,LUO Jin-heng,ZHAO Xin-wei,et al.Research on Failure Assessment Curves of High Grade Pipeline Steel[J].,2007,30(7):33.[doi:1001-3938(2007)04-0033-03]
[2]宫少涛,王爱民,吉玲康,等.X80与X100级管线钢屈服强度Rt 0.5与Rp 0.2的差异性研究[J].焊管,2007,30(5):42.[doi:1001-3938(2007)05-0042-03]
 GONG Shao-tao,WANG Ai-min,JI Ling-kang,et al.Study on Difference Between Yield Strength Rt 0.5 and Rp 0.2 for X80 and X100 Pipelines Steel[J].,2007,30(7):42.[doi:1001-3938(2007)05-0042-03]
[3]刘庆才,李 东,黎剑锋.影响输气管线钢管抗H2S性能主要因素的探讨[J].焊管,2007,30(5):54.[doi:1001-3938(2007)05-0054-05]
 LIU Qing-cai,LI Dong,LI Jian-feng.Key Factors Affecting Sour Service Ability of Welded Pipe and Its Domestic Production[J].,2007,30(7):54.[doi:1001-3938(2007)05-0054-05]
[4]王树人,崔志新.管线钢落锤撕裂试验异常脆性断口分析[J].焊管,2007,30(6):69.[doi:1001-3938(2007)06-0069-03]
 WANG Shu-ren? CUI Zhi-xin.Analysis on Abnormal Brittle Fracture of DWTT for Pipeline Steel[J].,2007,30(7):69.[doi:1001-3938(2007)06-0069-03]
[5]陶 鹏,张 弛,杨志刚,等.高钢级管线钢的组织和力学性能[J].焊管,2008,31(2):19.[doi:1001-3938(2008)02-0019-04]
 TAO Peng,ZHANG Chi,YANG Zhi-gang,et al.The Microstructure and Mechanical Property of X70,X80 and X100 Grade Pipeline Steel[J].,2008,31(7):19.[doi:1001-3938(2008)02-0019-04]
[6]黄明浩,徐 烽,黄国建.影响管线钢屈强比的因素探讨[J].焊管,2008,31(3):20.[doi:1001-3938(2008)03-0020-04]
 HUANG Ming-hao,XU Feng,HUANG Guo-jian.Discussion on Influencing Factors of Yield Ratio for Pipeline Steel[J].,2008,31(7):20.[doi:1001-3938(2008)03-0020-04]
[7]牛 辉,余大涛,高惠临.管线钢焊接热影响区的组织预测[J].焊管,2008,31(3):28.[doi:1001-3938(2008)03-0028-05]
 NU Hui,YU Da-tao,GAO Hui-lin.Structure Forecast of Pipeline Steel Welding Heat Affected Zone[J].,2008,31(7):28.[doi:1001-3938(2008)03-0028-05]
[8]孔君华,郑 琳,关 云,等.西气东输二线工程用18.4 mm厚 X80级热轧板卷生产实践[J].焊管,2008,31(6):50.[doi:1001-3938(2008)06-0050-04]
 KONG Jun-hua,ZHENG Ling,GUAN Yun,et al.Production Experience of X80 Grade Hot Rolled Coil with 18.4 mm Thickness Used〖JZ〗for the Second West to East Gas Pipeline Project[J].,2008,31(7):50.[doi:1001-3938(2008)06-0050-04]
[9]黄国建,张英慧,孔祥磊,等.特厚规格X70和X80级热轧卷板的开发与应用[J].焊管,2009,32(2):17.[doi:1001-3938(2009)02-0017-06]
 HUANG Guo-jian,ZHANG Ying-hui,KONG Xiang-lei,et al.Development and Application of X70 & X80 Grade HRC with Heavy Thickness[J].,2009,32(7):17.[doi:1001-3938(2009)02-0017-06]
[10]杨专钊,李云龙,邓波,等.管线钢拉伸试验中异常屈服强度研究与分析[J].焊管,2009,32(4):51.[doi:1001-3938(2009)04-0051-03]
 YANG Zhuan-zhao,LI Yun-long,DENG Bo,et al.Research and Analysis of Abnormal Yield Strength during Tensile Test of Pipeline Steel[J].,2009,32(7):51.[doi:1001-3938(2009)04-0051-03]
[11]赵红波,等.焊接热输入对厚壁X80管线钢粗晶热影响区组织及性能的影响[J].焊管,2017,40(9):6.[doi:10.19291/j.cnki.1001-3938.2017.09.002]
 ZHAO Hongbo,BI Zongyue,et al.Influence of Welding Heat Input on Coarse Grain Heat Affect Zone Microstructure and Properties of Thick Wall X80 Pipleline Steel[J].,2017,40(7):6.[doi:10.19291/j.cnki.1001-3938.2017.09.002]
[12]牛 辉,等.深海用X70高强度厚壁管线钢及焊管的开发[J].焊管,2018,41(2):1.[doi:10.19291/j.cnki.1001-3938.2018.02.001]
 NIU Hui,NIU Aijun,LIU Haizhang,et al.Development of X70 High Strength Thick Wall Pipeline Steel and Welded Pipe for Deep Sea[J].,2018,41(7):1.[doi:10.19291/j.cnki.1001-3938.2018.02.001]
[13]牛爱军,等.海底管线用管线钢及钢管的研发与应用[J].焊管,2019,42(6):1.[doi:10.19291/j.cnki.1001-3938.2019.6.001]
 NIU Aijun,BI Zongyue,et al.Development and Application of Pipeline Steel and Steel Pipe for Offshore Pipeline in China[J].,2019,42(7):1.[doi:10.19291/j.cnki.1001-3938.2019.6.001]

备注/Memo

备注/Memo:
收稿日期:2018-12-29
基金项目: 十三五国家重点研发计划“低温高压服役条件下高强度管线用钢”(项目编号2017YFB0304900)。
作者简介:刘清友(1965—),男,工学博士,教授级高级工程师,钢铁研究总院工程用钢研究所副所长,主要从事低合金、微合金钢的基础理论研究和工业生产技术开发等。
更新日期/Last Update: 2019-08-16