[1]陈碧强,张贵锋,王士元.高体积分数铝基复合材料Zn基钎料钎焊接头组织与性能[J].焊管,2019,42(8):19-25.[doi:10.19291/j.cnki.1001-3938.2019.8.004]
 CHEN Biqiang,ZHANG Guifeng,WANG Shiyuan.Microstructure and Property of Aluminium Matrix Composites Joint with High Volume Fraction Using Zn-based Brazing Filler Metal[J].,2019,42(8):19-25.[doi:10.19291/j.cnki.1001-3938.2019.8.004]
点击复制

高体积分数铝基复合材料
Zn基钎料钎焊接头组织与性能
()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
42
期数:
2019年第8期
页码:
19-25
栏目:
试验与研究
出版日期:
2019-08-28

文章信息/Info

Title:
Microstructure and Property of Aluminium Matrix Composites Joint with
High Volume Fraction Using Zn-based Brazing Filler Metal
文章编号:
10.19291/j.cnki.1001-3938.2019.8.004
作者:
陈碧强张贵锋王士元
西安交通大学 金属材料强度国家重点实验室 焊接研究所,西安 710049
Author(s):
CHEN Biqiang ZHANG Guifeng WANG Shiyuan
Institute of Welding, State Key Laboratory for Mechanical Behavior of Materials, Xi’ an Jiaotong University, Xi’an 710049, China
关键词:
钎焊铝基复合材料润湿性剪切强度
Keywords:
brazing aluminium matrix composites wettability shear strength
分类号:
TG407
DOI:
10.19291/j.cnki.1001-3938.2019.8.004
文献标志码:
A
摘要:
为了拓展高体积分数(70%)SiC颗粒增强铝基复合材料在电子封装领域的应用,从冶金思路出发,通过添加降熔元素Mg和Ga以改善钎缝/母材界面致密润湿,用3种Zn基中温软钎料在相同工艺参数(钎焊温度480 ℃,压力0.5 MPa,保温30 min)下钎焊铝基复合材料,重点分析了Mg、Ga元素的添加对钎焊接头组织、力学性能及润湿性的影响。Zn可深度扩散入基体内,改善基体/钎料(M/M)界面润湿性。力学性能试验结果表明:采用Zn-25Al-10Ga-9Mg-1Ti钎料(熔化范围418~441 ℃)获得了平均剪切强度为16.6 MPa的钎焊接头,均高于其他两种材料;采用优化后的1 MPa压力时,Zn-25Al-10Ga-9Mg-1Ti钎料接头剪切强度可达30 MPa。断裂表面和断裂路径分析表明,P/M(颗粒/金属钎料)界面是薄弱环节,同时钎缝中生成的块状Mg2Si相(含少量Al,约6%)也对接头的力学性能不利。3种含Mg量不同的钎料钎焊结果表明,Zn基钎料中Mg含量对M/M界面影响无显著差异,但对P/M界面润湿性与钎缝析出相(Mg2Si)有显著影响,这为优化Mg含量与钎焊规范(调控基体溶解与消除钎缝脆性)指明了方向。
Abstract:
In order to expand the application of SiC particle-reinforced aluminum matrix composites with the high volume fraction(70%) in the filed of electronic packaging, from the metallurgy aspect, through adding Mg and Ga as the melting point depressant to improve the compactness and wettability of brazing weld/base metal interface, three kinds of Zn-based medium-temperature solder were used to braze aluminum matrix composites under the same technological parameters of brazing temperature 480 ℃, pressure 0.5 MPa and heat preservation 30 min. The influence of Mg and Ga on the joint microstructure, mechanical strength and wettability were investigated. Zn can be deeply diffused into the matrix to improve wettability of the base metal/filler metal(M/M) interface. The results of the mechanical performance test results showed that the brazing joints with an average shear strength of 16.6 MPa were obtained with the Zn-25Al-10Ga-9Mg-1Ti brazing alloy(melting range: 418~441℃), which were higher than the other two materials. The shear strength of Zn-25Al-10Ga-9Mg-1Ti brazing joint can reach 30 MPa with the optimized pressure of 1 MPa. The fracture surface and path analysis showed that the particle/filler metal(P/M) interface was the weak link, and the massive Mg2Si phase, which containing about 6% Al, generated in brazing joint was also unfavorable to the mechanical properties of the joint. The brazing results of the three brazing alloys with different Mg content showed that there was no significant difference in the influence of Mg content in Zn-based brazing alloys on the M/M interface, but it had significant influence on the wettability of P/M interface and the precipitation phase Mg2Si of brazing joints, which showed the direction of optimizing Mg content and brazing specifications(regulating matrix dissolution and eliminating the brittleness of brazing joints).

参考文献/References:

[1] ROMERO G L, MARTINEZJR J L. Development of metal matrix composite baseplate technology for high current power modules[J]. International Journal of Microcircuits and Electronic Packaging, 1995, 18(3): 251-256.
[2] SADANANDAM J, BHIKSHAMAIAH G, JAIN M K. Effect of different reinforcements on the thermal expansion of 2124 aluminium metal-matrix composites[J]. Journal of Materials Science Letters, 1992, 11(22): 1518-1520.
[3] LEE H S, JEON K Y, KIM H Y, et al. Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications[J]. Journal of Materials Science, 2000, 35(24): 6231-6236.
[4] PREMKUMAR M K, HUNT W H, SAWTELL R R. Aluminum composite materials for multichip modules[J]. Journal of the Minerals, 1992, 44(7): 24-28.
[5] ZWEBEN C. Metal-matrix composites for electronic packaging [J]. Journal of the Minerals, 1992, 44(7): 15-23.
[6] 崔岩. 碳化硅颗粒增强铝基复合材料的航空航天应用[J]. 材料工程, 2002(6): 3-6.
[7] WU G, ZHANG Q, CHEN G. Properties of high reinforcement-content aluminum matrix composite for electronic packages[J]. Journal of Materials Science: Materials in Electronics, 2003, 14(1): 9-12.
[8] ISEKI T, KALNEDA T, MARUYAMA T. Interfacial reaction between SiC and aluminum during Joining[J]. Jounal of Materials Science, 1984(19): 1692-1698.
[9] KLEHNM R, EAGAR T W. Joining of 6061 Aluminum Matrix-Ceramic Particle Reinforced Composites[J]. WRC Bulletin, 1993(385): 1-28.
[10] 陈华斌, 严铿, 李敬勇, 等. 颗粒增强铝基复合材料SiCp/6066Al搅拌摩擦焊[J]. 华东船舶工业学院学报(自然科学版), 2004, 18(3): 62-64.
[11] HUSEYIN U. Friction stir welding of SiC particulate reinforced AA2124 aluminum alloy matrix composite[J]. Material and Design, 2007(28): 1440-1446.
[12] ZHANG Guifeng, WEI Zhongxin, CHEN Biqiang, et al. Abnormal transient liquid phase bondability of high-volume fraction sic particle-reinforced A356 composite for Cu interlayer and the interlayer improvement routes[J]. Journal of Materials Engineering and Performance, 2017, 26(12): 5921-5937.
[13] URENA A, GIL L, ESCRICHE E, et al. High temperature soldering of SiC particulate aluminium matrix composites(series 2000) using Zn-Al filler alloys[J]. Science and Technology of Welding and Joining, 2001, 6(1): 1-11.
[14] WANG Peng, LI Qiang, NIU Jitai. Investigation on soldering high volume fraction sic particle reinforced aluminum metal matrix composites[J]. Advanced Materials Research, 2014(853): 90-95.
[15] 张洋, 闫久春, 陈晓光. SiCp/A356 复合材料超声波辅助钎焊[J]. 焊接学报, 2009, 30(3): 89-92.
[16] ZHANG Guifeng, ZHANG Jianxun, PEI Yi. Joining of Al2O3p/Al composites by transient liquid phase(TLP) bonding and a novel process of active-transient liquid phase(A-TLP) bonding[J]. Materials Science and Engi-neering A, 2008(488): 146-156.
[17] ZHANG Guifeng, CAI Jie, CHEN Biqiang, et al. Availabi-lity of in-situ reinforced active-transient liquid phase bond with good wettability for 70 vol.% SiCp/A356 composite using Al-Mg-Ga-Ti interlayer[J]. Materials and Design, 2016(110): 653-662.

相似文献/References:

[1]张贵锋,苏伟,韦中新,等.搅拌摩擦钎焊制备铝/钢防腐双金属复合板新技术[J].焊管,2010,33(3):18.[doi:1001-3938(2010)03-0018-07]
 ZHANG Gui-feng,SU Wei,WEI Zhong-xin,et al.Fabrication of Al/steel bimetallic composite plate by a novel process of friction stir brazing (FSB)[J].,2010,33(8):18.[doi:1001-3938(2010)03-0018-07]
[2]刘 阳,张贵锋,王士元.钛合金与不锈钢异种金属钎焊的研究进展[J].焊管,2019,42(3):1.[doi:10.19291/j.cnki.1001-3938.2019.3.001]
 LIU Yang,ZHANG Guifeng,WANG Shiyuan.Research Progress on Dissimilar Metal Brazing of Titanium Alloy and Stainless Steel[J].,2019,42(8):1.[doi:10.19291/j.cnki.1001-3938.2019.3.001]
[3]刘世程,刘文红,林 凯,等.316L/30Mn2冶金复合油管的开发与力学性能检测[J].焊管,2022,45(5):36.[doi:10.19291/j.cnki.1001-3938.2022.05.005]
 LIU Shicheng,LIU Wenhong,LIN Kai,et al.Development and Mechanical Properties Test of 316L/30Mn2 Metallurgical Composite Tubing[J].,2022,45(8):36.[doi:10.19291/j.cnki.1001-3938.2022.05.005]

备注/Memo

备注/Memo:
收稿日期:2019-01-22
修改稿收稿日期:2019-03-18
基金项目: 国家自然科学基金“可实现钎缝原位强化的高体积分数铝基复合材料活性液相扩散焊中间层设计及钎缝内原位生成强化相的表征与控制”(项目编号5125390)。
作者简介:陈碧强(1987—),男,博士研究生,主要从事先进复合材料焊接技术研究。
更新日期/Last Update: 2019-09-29