[1]李发根,等.在役双金属复合管道失效机制及控制措施分析[J].焊管,2019,42(9):64-68.[doi:10.19291/j.cnki.1001-3938.2019.9.012]
 LI Fagen,YANG Jiamao,et al.Failure Mechanism and Control Measures Analysis of Bimetal Composite Pipelines[J].,2019,42(9):64-68.[doi:10.19291/j.cnki.1001-3938.2019.9.012]
点击复制

在役双金属复合管道
失效机制及控制措施分析
()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
42
期数:
2019年第9期
页码:
64-68
栏目:
经验交流
出版日期:
2019-09-28

文章信息/Info

Title:
Failure Mechanism and Control Measures Analysis of Bimetal Composite Pipelines
文章编号:
10.19291/j.cnki.1001-3938.2019.9.012
作者:
李发根1 2杨家茂3冯 泉4李为卫1 2付安庆1 2
1. 中国石油集团石油管工程技术研究院, 西安 710065;
2. 石油管材及装备材料服役行为与结构安全国家重点实验室, 西安 710065;
3. 西安长庆科技工程有限公司, 西安 710018; 4. 中国石油塔里木油田分公司, 新疆 库尔勒 841000
Author(s):
LI Fagen1 2 YANG Jiamao3 FENG Quan4 LI Weiwei1 2 FU Anqing1 2
1. CNPC Tubular Goods Research Institute, Xi’an 710065, China;
2. State Key State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Xi’an 710065, China;
3. Xi’An Changqing Science and Technology Engineering Co., Ltd., Xi’an 710018, China; 4. PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China
关键词:
机械复合管失效机制风险评估内部涡流检测漏磁检测
Keywords:
mechanical composite pipe failure mechanism risk assessment internal eddy current inspection magnetic flux leakage testing
分类号:
TE973
DOI:
10.19291/j.cnki.1001-3938.2019.9.012
文献标志码:
B
摘要:
双金属复合管被认为是解决高腐蚀性气田地面集输管线腐蚀问题的一种相对安全和经济的办法,但目前国内应用过程中发生了多起失效案例。针对近年来316L内衬机械复合管发生环焊缝开裂、环焊缝腐蚀和衬层塌陷三类典型失效问题,分析失效原因,梳理失效风险,剖析了失效风险控制面临的挑战问题和提出可行性的解决措施。分析指出,316L内衬机械复合管存在双层结构和结合强度低的固有特性,衬层塌陷失效风险不可避免,使用的主要对接焊接工艺不够成熟,焊接失效隐患将会长期存在。进一步明确了可行的316L内衬机械复合管失效风险控制技术,基于肯特打分的半定量风险评估与开挖检查,可作为主要失效控制手段之一,同时内部涡流检测和漏磁检测技术集成已能够检出大面积的金属损伤,为双金属复合管开展内检、排查失效风险提供了可能。
Abstract:
Bimetal composite pipes are considered to be a relatively safe and economical method to solve the corrosion problem of surface gathering and transportation pipelines in highly corrosive gas fields. However, many failure cases have occurred in the domestic application process. This research mainly focuses on three typical failure problems of 316L mechanical composite pipe with inner lining in recent years, including girth weld cracking, girth weld corrosion and liner collapse. The failure causes are analyzed, failure risks are sorted out, the challenges faced by failure risk control are studied, and feasible solutions are put forward. It is pointed out that 316L lined mechanical composite pipe has inherent characteristics of double-layer structure and low bonding strength. The risk of liner collapse failure is inevitable. The main butt welding technology used is not mature enough, and the hidden danger of welding failure will exist for a long time. The feasible failure risk control technology of 316L lined mechanical composite pipe is further clarified. Semi-quantitative risk assessment and excavation inspection based on Kent scoring can be used as one of the main failure control methods. At the same time, the integration of internal eddy current detection and magnetic flux leakage detection technology have been able to detect a large area of metal damage, which provides a possibility for the internal inspection of bimetal composite pipes and the investigation of failure risk.

参考文献/References:

[1] 叶帆, 高秋英. 凝析气田单井集输管道内腐蚀特征及防腐技术[J]. 天然气工业, 2010, 30(4): 96-101, 147-148.
[2] ANONYMOUS. Bimetallic pipe chosen for corrosive service[J]. Oil & Gas Journal, 1991, 89(30): 82.
[3] SINGH B, FOLK T, JUKES P, et al. Engineering pragmatic solutions for CO2 corrosion problems[C]//Corrosion/07. Houston, Texas: NACE, 2007: 07310.
[4] 李发根, 魏斌, 邵晓东, 等. 高腐蚀性油气田用双金属复合管[J]. 油气储运, 2010, 32(12): 92-96.
[5] MACRAE C. One pipe or two-manufacturing clad pipe for energy applications[J/OL]. https://www.the fabricator.com/article/hydroforming/one-pipe-or-twor, 2008-06-17.
[6] SPENCE R A , SCHAFER K , HUTCHISON J , et al. Bimetal, CRA-lined pipe employed for North Sea field development [J]. Oil & Gas Journal, 1999, 97(18): 80-88.
[7] ROMMERSKIRCHEN I. New progress caps 10 years of work with bubi pipes[J]. World Oil, 2005, 226(7):69-70.
[8] MIURAA R, SAKURABA M. Clad steel pipe for corrosive gas transportation[C]//OTC’95 Annual Offshore Technology Conference. Houston, Texas, USA: [s.n], 1995: 845-851.
[9] LI Fagen, WEI Bin, BAI Zhenquan, at el. Fit for purpose analysis on bimetallic lined pipe in yaha gas condensate field[C]//ICPTT 2011: Sustainable Solutions For Water, Sewer, Gas, And Oil Pipelines. Beijing, China:ICPTT, 2011: 81-89.
[10] RUSSELL D, WILHELM S M. Analysis of bimetallic pipe for sour service[J]. SPE Production Engineering, 1991, 6 (3): 291-296.
[11] 潘旭, 周永亮, 冯志刚, 等. 双金属复合管内衬塌陷问题与建议[J]. 石油工程建设, 2017, 43(1): 57-59.
[12] 郭崇晓, 蒋钦荣, 张燕飞, 等. 双金属复合管内覆(衬)层应力腐蚀开裂失效原因分析[J]. 焊管, 2016, 39(2): 33-38.
[13] 陈浩, 顾元国, 江胜飞. 20G/316L双金属复合管失效的原因[J]. 腐蚀与防护, 2015, 36(12): 1194-1197.
[14] FU A Q, KUANG X R, HAN Y. Failure analysis of girthweld cracking of mechanically lined pipe sed in gasfield gathering system[J]. Engineering Failure Analysis, 2016(68): 64-75.
[15] 陈海云, 曹志锡. 热载荷对双金属复合管残余接触压力的影响[J]. 塑料工程学报, 2007, 14(2): 86-89.
[16] 魏帆, 姜义, 吴泽, 等. 双金属复合管鼓包机理分析和试验研究[J]. 天然气与石油, 2017, 35(5): 6-11.
[17] LIN Yuan, KYRIAKIDS S. Wrinking failure of lined pipe under bending[C]//32nd International Conference on Ocean, Offshore and Arctic Engineering. Nantes, France:[s.n.], 2013.
[18] VASILIKIS D, KARAMANOS S A. Mechanical behavior and wrinkling of lined pipes[J]. International Journal of Solids and Structures, 2012 (49) : 3432-3446.
[19] 李发根, 孟繁印, 郭琳, 等. 双金属复合管焊接技术分析[J]. 焊管, 2014, 37(6): 40-43.
[20] 常泽亮, 金伟, 陈博, 等. 焊接工艺对316L内衬复合管焊接接头点蚀电位的影响[J]. 全面腐蚀控制, 2017, 30(11): 18-22.
[21] 卢泓方, 吴晓南, ISELEY T, 等. 国外天然气管道检测技术现状及启示[J]. 天然气工业, 2018, 38(2): 103-111.
[22] 沈功田, 王宝轩, 郭锴. 漏磁检测技术的研究与发展现状[J]. 中国特种设备安全, 2017, 33(9): 43-52.
[23] HERBERT W, THOMAS M, GERHARD K. Progress in ultrasonic in-line inspection[C]//Pipeline Pigging 2016.  Iran Tehran: [s.n.], 2016: 53-58.
[24] 陈鹏, 韩德来, 蔡强富, 等. 电磁超声检测技术的研究进展[J]. 国外电子测量技术, 2012, 31(11): 18-21.
[25] DUBOV A A. A study of metal properties using the method of magnetic memory[J]. Metal Science & Heat Treatment, 1997, 39(9): 401-405.
[26] 王志涛, 韩文礼. 基于直流电位梯度法的滩浅海海底管道外防腐层破损检测技术研究[J]. 表面技术, 2016, 45(11): 134-138.
[27] BRUNO J, IVO U, ALAIN X, at el. High frequency transformer model derived from limited information about the transformer geometry[J]. International Journal of Electrical Powerand Energy Systems, 2018(94): 300-310.
[28] 姚欢, 刘琰, 冯挺. 瞬变电磁法(TEM)在我国石油工业埋地管道检测中的应用[J]. 石化技术, 2016(1): 130-131.
[29] 王维斌, 董红军, 冯展军, 等. 非开挖Nopig检测技术发展现状与应用前景[J]. 油气储运, 2012, 31(3): 161-164.

备注/Memo

备注/Memo:
收稿日期:2019-03-12
基金项目: 陕西省重点研发计划资助项目“原油采集输管线防腐蚀集成技术研究”(项目编号2018ZDXM-GY-171);陕西省重点研发计划资助项目“双金属复合管失效机制及控制技术研究”(项目编号2019KJXX-091)。
作者简介:李发根(1985—),男,高级工程师,2008年硕士毕业于中国石油大学(北京)材料学专业,现主要从事石油管材的研究工作。
更新日期/Last Update: 2019-10-24