[1]冯月明,姚百胜,毕台飞,等.中熵合金力学性能研究进展[J].焊管,2021,44(1):25-31.[doi:10.19291/j.cnki.1001-3938.2021.01.005]
 FENG Yueming,YAO Baisheng,BI Taifei,et al.Research Progress on Mechanical Properties of Medium Entropy Alloy[J].,2021,44(1):25-31.[doi:10.19291/j.cnki.1001-3938.2021.01.005]
点击复制

中熵合金力学性能研究进展()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
第44卷
期数:
2021年第1期
页码:
25-31
栏目:
综述
出版日期:
2021-01-28

文章信息/Info

Title:
Research Progress on Mechanical Properties of Medium Entropy Alloy
文章编号:
10.19291/j.cnki.1001-3938.2021.01.005
作者:
冯月明姚百胜毕台飞易永根田永达汲江涛王 雷
1. 西安石油大学 材料科学与工程学院,西安 710065;?div>2. 中国石油长庆油田第一采油厂,西安 716002;?/div>
3. 中铁第一勘察设计院集团有限公司,西安 710043
Author(s):
FENG Yueming YAO Baisheng BI Taifei YI Yonggen TIAN Yongda JI Jiangtao WANG Lei
1. School of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China;
2. No.1 Oil Production Plant of PetroChina Changqing Oilfield Company, Xi’an 716002, China;
3. China Railway First Survey and Design Institute Group Co., Ltd., Xi’an 710043, China)
关键词:
中熵合金高熵合金孪晶强化
Keywords:
medium entropy alloy high entropy alloy twin crystal strengthening
分类号:
TG135
DOI:
10.19291/j.cnki.1001-3938.2021.01.005
文献标志码:
A
摘要:
中熵合金材料由于多组元结构表现出高强度、高塑性和低温下良好的断裂韧性,但其力学性能在高温下仍然较差,限制了在工程中的应用。以CoCrNi中熵合金为例,综述了其力学性能的特点,并简述了CoCrNi中熵合金相应的变形机制。同时,讨论了添加合金元素、预塑性变形与优化制造工艺这3方面因素对中熵合金力学性能的影响。最后,提出了中熵合金在实际生产应用过程中可能面临的问题。
Abstract:
The medium entropy alloy exhibit high strength, high plasticity and good fracture toughness at low temperatures due to their multi-component structure, however, its mechanical properties do not perform well at high temperature, which limits its application in engineering area. Taking CoCrNi medium entropy alloy as an example, the characteristics of mechanical properties and the deformation mechanism of CoCrNi medium entropy alloy are summarized. The effects of the addition of alloying elements, pre-plastic deformation and optimization of manufacturing process on the mechanical properties of the medium entropy alloy are discussed. Finally, the possible problems in the actual production and application of the medium entropy alloy are presented.

参考文献/References:

[1] ZHANG L S,MA G L,FU L C,et al. Recent progress in high-entropy alloy[J]. Advanced Materials Research, 2013(631-632):227-232.

[2] YEH J W,CHEN S K,LIN S J,et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials,2004(6):299-303.
[3] CHOI W M,JUNG S,JO Y H,et al. Design of new face-centered cubic high entropy alloys by thermodynamic calculation[J]. Metals and Materials International,2017(23):839-847.
[4] WON J W,KANG M,KWON H J,et al. Edge-cracking behavior of CoCrFeMnNi high-entropy alloy during hot rolling[J]. Metals and Materials International,2018,(24):1432-1437.
[5] YIM D,KIM H S. Fabrication of the high-entropy alloys and recent research trends:a review[J]. Korean Journal of Metals and Materials,2017(55):671-683.
[6] KANG M,WON J W,LIM K R,et al. Microstructure and mechanical properties of as-cast CoCrFeMnNi high entropy alloy[J]. Korean Journal of Metals and Materials, 2017(55):732-738.
[7] NAM S,KIM C,KIM Y M. Recent studies of the lase?span />cladding of high entropy alloys[J]. Journal of Welding & Joining,2017,35(4): 58-66.
[8] AGUSTIANINGRUM M P,PARK N,YOSHIDA S,et al. Effect of aluminum addition on solid solution strengthening in CoCrNi medium-entropy alloy[J]. Journal of Alloys and Compounds,2019(781): 866-872.
[9] SCHNEIDER M,GEORGE E P,MANESCAU T J,et al. Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy[J]. International Journal of Plasticity,2020(124):155-169.
[10] GLUDOVATZ B,HOHENWARTER A,THURSTON K V,et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J]. Nature Communications,2016(7):10602.
[11] GLUDOVATZ B,HOHENWARTER A,CATOOR D,et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science,2014,345(6201):1153-1158.
[12] OTTO F,DLOUHY A,SOMSEN C,et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Materialia,2013,61(15): 5743-5755.
[13] WU Z,BEI H,PHARR G M,et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures[J]. Acta Materialia,2014(81): 428-441.
[14] LAPLANCHE G,KOSTKA A,REINHART C,et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi[J]. Acta Materialia,2017(128): 292-303.
[15] ALLAIN S,CHATEAU J P,BOUAZIZ O,et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J]. Materials Science & Engineering A,2004(387): 158-162.
[16] LAPLANCHE G,KOSTKA A,HORST O M,et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy[J]. Acta Materialia, 2016(118):152-163.
[17] ZADDACH A J,NIU C,KOCH C C,et al. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy[J]. JOM,2013(65):1780-1789.
[18] QIAN Y,QI L,CHEN K,et al. The nanostructured origin of deformation twinning[J]. Nano letters,2012(12): 887-892.
[19] OTTO F,DLOUHY A,PRADEEP K G,et al. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures[J]. Acta Materialia,2016(112):40-52.
[20] MIAO J,SLONE C,SMITH T,et al. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy[J]. Acta Materialia,2017(132):35-48.
[21] WU Z,BEI H,OTTO F. et al. George Recovery,recrystallization,grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys[J]. Intermetallics,2014(46):131-140.
[22] YANG M,YAN D,YUAN F,et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(28):7224-7229.
[23] LIU W H,YANG T,LIU C T. Precipitation hardening in CoCrFeNi-based high entropy alloys[J]. Materials Chemistry and Physics,2018(210):2-11.
[24] CHEN S T,TANG W Y,KUO Y F,et al. Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys[J]. Materials Science & Engineering A,2010,527(21-22):5818-5825.
[25] GWALANI B,SONI V,LEE M,et al. Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy[J]. Materials & Design,2017,121(5):254-260.
[26] HE J Y,WANG H,HUANG H L,et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia,2016(102): 187-196.
[27] ZHAO Y L,YANG T,TONG Y,et al. Heterogeneous precipitation behavior and stacking fault mediated deformation in a CoCrNi-based medium-entropy alloy[J]. Acta Materialia,2017(138):72-82.
[28] LU W J,LUO X,YANG Y Q,et al. Effects of Al addition on structural evolution and mechanical properties of the CrCoNi medium-entropy alloy[J]. Materials Chemistry and Physics,2019(238):121841.
[29] SHUN T T,CHANG L Y,SHIU M H. Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys[J]. Materials Characterization,2012(70):63-67.
[30] JIANG H,JIANG L,QIAO D,et al. Effect of Niobium on microstructure and properties of the CoCrFeNbx Ni high entropy alloys[J]. Journal of Materials Science & Technology,2017,33(7):712-717.
[31] YANG S F,ZHANG Y,CHENG J L,et al. Microstructure and properties of Al0.4FeCrNiCo1.5Ti0.3 high entropy alloy prepared by MA-HP technique[J]. Rare Metal Materials and Engineering,2014,43(12):2948-2952.
[32] AKIRA T,INOUE A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys[J]. The Japan Institute of Metals,2000,41(11):1372-1378.
[33] ZHOU Y J,ZHANG Y,WANG Y L,et al. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties[J]. Applied Physics Letters,2007,9(18):181904-181904.
[34] KAO Y F,CHEN T J,CHEN S K,et al. Microstructure and mechanical property of as-cast,-homogenized,and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys[J]. Elsevier,2009(488):57-64.
[35] ZUO T T,LI R B,REN X J,et al. Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy[J]. Journal of Magnetism and Magnetic Materials,2014,371(12):60-68.
[36] TONG C J,CHEN Y L,CHEN S K,et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metallurgical and Materials Transactions A,2005(36):881-893.
[37] WANG W R,WANG W L,WANG S C,et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys[J]. Intermetallics,2012(26):44-51.
[38] JEONG H U,PARK N. TWIP and TRIP-associated mechanical behaviors of Fex(CoCrMnNi)100-x medium-entropy ferrous alloys[J]. Materials Science and Engineering:A, 2020(782):138896.
[39] SATHIYAMOORTHI P,ASGHARI-RAD P,BAE J W, et al. Fine tuning of tensile properties in CrCoNi medium entropy alloy through cold rolling and annealing[J]. Intermetallics,2019(113):106578.
[40] DENG H W,XIE Z M,ZHAO B L,et al. Tailoring mechanical properties of a CoCrNi medium entropy alloy by controlling nanotwin-HCP lamellae and annealing twins[J]. Materials Science and Engineering:A,2019(744):241-246.
[41] MA Y,YUAN F P,YANG M X,et al. Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures[J]. Acta Materialia,2018(148):407-418.
[42] WU X L,JIANG P,CHEN L,et al. Extraordinary strain hardening by gradient structure[J]. Proceedings of the National Academy of Sciences of the United States of America,2014(111):7197-7201.
[43] GU J,ZHANG L X,NI S. Effects of grain size on the microstructures and mechanical properties of 304 austenitic steel processed by torsional deformation[J]. Micron,2018(105):93-97.
[44] LU K. Making strong nanomaterials ductile with gradients[J]. Science,2014(345):1455-1456.
[45] GUO W,PEI Z R,SANG X H,et al. Shape-preserving machining produces gradient nanolaminate medium entropy alloys with high strain hardening capability[J]. Acta Materialia,2019(170):176-186.
[46] SLONE C E,CHAKRABORTY S,MIAO J,et al. Influence of deformation induced nanoscale twinning and FCC-HCP transformation on hardening and texture development in medium-entropy CrCoNi alloy[J]. Acta Materialia,2018(158):38-52.
[47] SHANG Y Y,WU Y,HE J Y,et al. Solving the strength-ductility tradeoff in the medium-entropy NiCoCr alloy via interstitial strengthening of carbon[J]. Intermetallics, 2019(106):77-87.
[48] MORAVCIK I,CIZEK J,KOVACOVA Z,et al. Mechanical and microstructural characterization of powder metallurgy CoCrNi medium entropy alloy[J]. Materials Science and Engineering:A,2017(701):370-380.
[49] GUAN S,WAN D,SOLBERG K,et al. Additive manufacturing of fine-grained and dislocation populated CrMnFeCoNi high entropy alloy by laser engineered net shaping[J]. Materials Science and Engineering:A,2019(761):138056.
[50] TONG Z,REN X,JIAO J,et al. Laser additive manufacturing of FeCrCoMnNi high-entropy alloy:Effect of heat treatment on microstructure,residual stress and mechanical property[J]. Journal of Alloys and Compounds,2019(785):1144-1159.
[51] XIANG S,LUAN H,WU J,et al. Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique[J]. Journal of Alloys and Compounds,2019(773):387-392.
[52] ZHU Z G,AN X H,LU W J,et al. Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy[J]. Materials Research Letters,2019(7):453-459.
[53] XU Z,ZHANG H,LI W,et al. Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting[J]. Additive Manufacturing,2019(28): 766-771.

相似文献/References:

[1]陈路林,王 成,刘 强,等.工艺参数对H13钢表面激光熔覆高熵合金成型和性能的影响[J].焊管,2022,45(3):13.[doi:10.19291/j.cnki.1001-3938.2022.03.003]
 CHEN Lulin,WANG Cheng,LIU Qiang,et al.Effect of Process Parameters on Forming and Properties of Laser Cladding High Entropy Alloy on H13 Steel Surface[J].,2022,45(1):13.[doi:10.19291/j.cnki.1001-3938.2022.03.003]
[2]王兴阳,王 虎.NbC含量对钢表面AlCoCrCuFeNiMn(NbC)x高熵合金组织和性能的影响[J].焊管,2022,45(6):8.[doi:10.19291/j.cnki.1001-3938.2022.06.002]
 WANG Xingyang,WANG Hu.Effect of NbC Content on Microstructure and Properties of AlCoCrCuFeNiMn(NbC)x High Entropy Alloy on Steel Surface[J].,2022,45(1):8.[doi:10.19291/j.cnki.1001-3938.2022.06.002]
[3]邹家豪,李先芬,程慧敏,等.Nb对激光熔覆Fe45Mn30Co10Cr10Nb5高熵合金层组织与性能的影响[J].焊管,2022,45(12):15.[doi:10.19291/j.cnki.1001-3938.2022.12.003]
 ZOU Jiahao,LI Xianfen,CHENG Huimin,et al.Influence of Nb on Microstructure and Properties of Laser Cladding Fe45Mn30Co10Cr10Nb5 High Entropy Alloy[J].,2022,45(1):15.[doi:10.19291/j.cnki.1001-3938.2022.12.003]

备注/Memo

备注/Memo:
收稿日期:2020-08-17
基金项目: 陕西省教育厅科研计划项目(项目编号18JK0604);中国石油科技创新基金研究项目(项目编号2018D-5007-0216)。
者简介:冯月明(1997—),女,陕西西安人,硕士研究生,主要研究方向为金属材料性能与表征。
更新日期/Last Update: 2021-03-22