[1]谷 雨,姜韶华,徐 海,等.X80管线钢CGHAZ连续冷却组织转变规律及力学性能研究[J].焊管,2021,44(6):13-17.[doi:10.19291/j.cnki.1001-3938.2021.06.003]
 GU Yu,JIANG Shaohua,XU Hai,et al.Continuous Cooling Transformation Behavior in the Weld Coarse Grained Heat Affected Zone and Mechanical Properties of X80 Pipeline Steel[J].,2021,44(6):13-17.[doi:10.19291/j.cnki.1001-3938.2021.06.003]
点击复制

X80管线钢CGHAZ连续冷却组织转变规律及力学性能研究()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
第44卷
期数:
2021年第6期
页码:
13-17
栏目:
试验与研究
出版日期:
2021-06-28

文章信息/Info

Title:
Continuous Cooling Transformation Behavior in the Weld Coarse Grained Heat Affected Zone and Mechanical Properties of X80 Pipeline Steel
文章编号:
10.19291/j.cnki.1001-3938.2021.06.003
作者:
谷 雨姜韶华徐 海罗刘敏许彩云刘晓青劳晓东
1. 周口师范学院 机械与电气工程学院,河南 周口466000;
2. 潍坊职业学院,山东 潍坊 262737;
3. 渤海装备钢管销售公司,河北 青县 062658
Author(s):
GU Yu JIANG Shaohua XU Hai LUO Liumin XU Caiyun LIU Xiaoqing LAO Xiaodong
1. School of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou 466000, Henan, China;
2. Weifang Vocational College, Weifang 262737, Shandong, China;
3. CNPC BEM Steel Pipe Sales Company, Qingxian 062658, Hebei, China
关键词:
X80管线钢粗晶热影响区CCT曲线冷却速度力学性能
Keywords:
X80 pipeline steel coarse grained heat affected zone CCT curves cooling rate mechanical properties
分类号:
TG113
DOI:
10.19291/j.cnki.1001-3938.2021.06.003
文献标志码:
A
摘要:
为了研究X80管线钢粗晶热影响区(CGHAZ)连续冷却行为对其组织和性能的影响,进行了热模拟试验,并通过显微组织观察、显微硬度测试、低温冲击试验等方法对X80管线钢CGHAZ连续冷却行为及力学性能进行了研究。结果显示,CGHAZ在低冷速时,组织为准多边形铁素体(QF)+粒状贝氏体(GB),冷却速度在20 ℃/s时为GB+贝氏体铁素体(BF),原奥氏体晶粒尺寸(PAGS)随冷却速度增大而减小;硬度随冷却速度升高而增大,并且获得安全硬度(350HV)的冷却速度为72 ℃/s;冲击韧性随冷却速度升高而增大,但是冷却速度超过80 ℃/s或者低于20 ℃/s时,冲击韧性开始降低。最后,根据试验结果确定了X80管线钢CGHAZ的CCT曲线。
Abstract:
In order to study the effect of continuous cooling behavior of CGHAZ of X80 pipeline steel on its microstructure and mechanical properties, thermal simulation test was carried out. The continuous cooling behavior and mechanical properties of CGHAZ were studied by means of microstructure observation, microhardness test and low temperature impact test. The results show that the microstructure of CGHAZ is quasipolygonal ferrite (QF) + granular bainite (GB) at low cooling rate and GB + bainite ferrite (BF) at 20 ℃/s. The original austenite grain size (PAGS) decreases with the increase of cooling rate. The hardness increases with the increase of cooling speed, and the cooling speed of safety hardness (350HV) is 72 ℃/s. The impact toughness increases with the increase of cooling rate, but when the cooling rate exceeds 80 ℃/s or the cooling rate is lower than 20 ℃/s, the impact toughness begins to decrease. Finally, the CCT curve of X80 pipeline steel CGHAZ is determined according to the test results.

参考文献/References:

[1] 王晓香. 当前管线钢管研发的几个热点问题[J]. 钢管, 2014, 37(4):5-13.

[2] KONG X W, QIU C L. Continuous cooling bainite transformation characteristics of a low carbon microalloyed steel under the simulated welding thermal cycle process[J]. Journal of Materials Science & Technology, 2013, 29 (5):446-450.
[3] 张侠洲, 陈延请, 王凤会, 等. X70管线钢焊接接头调质处理后的低温冲击韧性[J].材料热处理学报, 2018, 39(6): 156-162.
[4] 周培山, 王查理, 李浩, 等. X70大管径管线钢SMAW+FCAW的焊接工艺[J]. 焊接技术, 2019, 48(9):59-61.
[5] CHEN X W, QIAO G Y, HAN X L, et al. Effects of Mo, Cr and Nb on microstructure and mechanical properties of heat affected zone for Nb-bearing X80 pipeline steels[J]. Materials & Design, 2014(53):888-901.
[6] HARRISON P L, FARRAR R A. Application of continuous cooling transformation diagrams for welding of steels[J]. International Materials Reviews, 2013, 34(1):35-51.
[7] 周在生, 马丽丽. 管线钢高效焊接技术的研究现状及前景分析[J]. 石化技术, 2020, 27(3):235-236.
[8] SHOME M, GUPTA O P, MOHANTY O N. Effect of simulated thermal cycles on the microstructure of the heat-affected zone in HSLA-80 and HSLA-100 steel plates[J]. Metallurgical and Materials Transactions A, 2004, 35(3): 985-996.
[9] ZHAO J W, JIANG Z Y, KIM J S, et al. Effects of tungsten on continuous cooling transformation characteristics of microalloyed steels[J]. Materials & Design, 2013(49): 252-258.
[10] CHEN J , TANG S, LIU Z, et al. Influence of molybdenum content on transformation behavior of high performance bridge steel during continuous cooling[J]. Materials & Design, 2013(49):465-470.
[11] LIU Y, YANG L Q, FENG B, et al. Physical simulation on microstructure and properties for weld HAZ of X100 pipeline steel[J]. Materials Science Forum, 2013(762):556-561.
[12] YANG H,WANG X X, QU J B. Effect of boron on CGHAZ microstructure and toughness of high strength low alloy steels[J]. Journal of Iron and Steel Research (International) ,2014, 21(8):787-792.
[13] 田燕. 焊接区断口金相分析[M]. 北京: 机械工业出版社, 1991:33-45.
[14] 高惠临. 管线钢与管线钢管[M]. 北京: 中国石化出版社, 2012:106-179.
[15] THOMPSON S W , COLVIN D J , KRAUSS G. Continuous cooling transformations and microstructures in a low-carbon, high strength low alloy plate steel[J]. Metallurgical and Materials Transactions A,1990,21(6):1493-1507.
[16] YUE X. Investigation on heat-affected zone hydrogen-induced cracking of highstrength naval steels using the Granjon implant test[J]. Welding in the World,2015(59):77-89.
[17] YUE X, LIPPOLD J C. Evaluation of heat-affected zone hydrogen-induced cracking in navy steels[J]. Welding Research, 2013(92):20-28.
[18] KUMAR S, NATH S K, KUMAR V. Continuous cooling transformation behavior in the weld coarse grained heat affected zone and mechanical properties of Nb-microalloyed and HY85 steels[J]. Materials & Design, 2016(90):177-184.

相似文献/References:

[1]孙宏.西气东输二线用国产X80钢级螺旋埋弧焊管性能分析[J].焊管,2010,33(2):13.[doi:1001-3938(2010)02-0013-04]
 SUN Hong.Analysis on Domestic X80 Grade SAWH Pipe Property Used in the[J].,2010,33(6):13.[doi:1001-3938(2010)02-0013-04]
[2]李立科,郑茂盛,孙利军,等.热处理对X80管线钢组织性能的影响[J].焊管,2010,33(4):18.[doi:1001-3938(2010)04-0018-04]
 LI Li-ke,ZHENG Mao-sheng,SUN Li-jun,et al.The Influence of Heat Treatment on Microstructure Properties of X80 Pipeline Steel[J].,2010,33(6):18.[doi:1001-3938(2010)04-0018-04]
[3]王娜,雷阿利.X80管线钢焊接接头中焊缝的耐蚀性的研究[J].焊管,2010,33(5):24.[doi:1001-3938(2010)05-0024-06]
 WANG Na,LEI A-li.Research on the Corrosion Restistance of X80 Pipeline Steel Welding Joints in Sulfer-containing Medium[J].,2010,33(6):24.[doi:1001-3938(2010)05-0024-06]
[4]张敏,赵鹏康,毕宗岳,等.X80管线钢用气体保护焊丝的研制[J].焊管,2010,33(10):23.[doi:1001-3938(2010)10-0023-06]
 ZHANG Min,ZHAO Peng-kang,BI Zong-yue,et al.Development of Gas-shielded Welding Wire for X80 Pipeline Steel[J].,2010,33(6):23.[doi:1001-3938(2010)10-0023-06]
[5]陈延清,杜则裕,许良红,等.高Nb X70管线钢焊接连续冷却转变曲线分析[J].焊管,2010,33(7):21.[doi:1001-3938(2010)07-0021-03]
 CHEN an-qing,DU Ze-yu,XU Liang-hong,et al.Welding Continuous Cooling Transition Curve Of High Nb X70 Pipeline Steel[J].,2010,33(6):21.[doi:1001-3938(2010)07-0021-03]
[6]李根全,肖凡,李志忠,等.螺旋埋弧焊管焊缝韧性[J].焊管,2010,33(8):24.[doi:1001-3938(2010)08-0024-04]
 LI Gen-quan,XIAO Fan,LI Zhi-zhong,et al.Weld Toughness of SAWH Pipes[J].,2010,33(6):24.[doi:1001-3938(2010)08-0024-04]
[7]刘振伟,郭 晖,尚成嘉.高Nb X80管线钢的应变时效研究[J].焊管,2011,34(5):12.
[8]贾改风,梁永昌,王文录,等.邯钢厚规格X80管线钢的研发与应用[J].焊管,2011,34(11):24.[doi:1001-3938(2011)11-0024-06]
 JIA Gai-feng,LIANG Yong-chang,WANG Wen-lu,et al.Development and Application of X80 Pipeline Steel with Heavy Wall Thickness in HanSteel[J].,2011,34(6):24.[doi:1001-3938(2011)11-0024-06]
[9]赵志伟,徐 强,彭立山,等.X80感应加热弯管回火工艺研究[J].焊管,2012,35(1):44.[doi:1001-3938-(2012)01-0044-04]
 ZHAO Zhi-wei,XU Qiang,PENG Li-shan,et al.Study on Tempering Process of X80 Induction Heating Bend[J].,2012,35(6):44.[doi:1001-3938-(2012)01-0044-04]
[10]韩晨.高铌和低铌X80管线钢动态再结晶行为的研究[J].焊管,2012,35(2):10.[doi:1001-3938(2012)02-0010-06]
 HAN Chen.Study on Dynamic Recrystallization Behavior of High-Nb and Low-Nb X80 Pipeline Steel[J].,2012,35(6):10.[doi:1001-3938(2012)02-0010-06]

备注/Memo

备注/Memo:
收稿日期:2021-03-15
基金项目: 国家自然科学基金“高强海底管线环焊缝的疲劳裂纹萌生扩展及断裂行为研究”(项目编号52001340);河南省高等学校青年骨干教师培养计划“磨矿过程多源信息融合软测量方法研究”(项目编号2020GGJS216);河南省高等学校重点科研项目“SnPb焊料的重金属浸出规律与迁移”(项目编号20A430035)。
作者简介:谷 雨(1967—),女,博士,周口师范学院讲师,主要从事机械专业课程教学和高强管线钢焊接性能研究工作。
更新日期/Last Update: 2021-07-02