[1]刘 斌,刘 云,牛 辉,等.四丝内焊+五丝外焊埋弧焊接头软化及其对焊管承载能力的影响[J].焊管,2021,44(12):1-6.[doi:10.19291/j.cnki.1001-3938.2021.12.001]
 LIU Bin,LIU Yun,NIU Hui,et al.Softening of Four Wire Internal Welding + Five Wire External Welding Submerged Arc Welding Joint and its Effect on Bearing Capacity of Welded Pipe[J].,2021,44(12):1-6.[doi:10.19291/j.cnki.1001-3938.2021.12.001]
点击复制

四丝内焊+五丝外焊埋弧焊接头软化及其对焊管承载能力的影响()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
第44卷
期数:
2021年第12期
页码:
1-6
栏目:
试验与研究
出版日期:
2021-12-28

文章信息/Info

Title:
Softening of Four Wire Internal Welding + Five Wire External Welding Submerged Arc Welding Joint and its Effect on Bearing Capacity of Welded Pipe
文章编号:
10.19291/j.cnki.1001-3938.2021.12.001
作者:
刘 斌刘 云牛 辉韦 奉李 霄
1. 宝鸡石油钢管有限责任公司,陕西 宝鸡 721008; 2. 国家石油天然气管材工程技术研究中心,陕西 宝鸡 721008;3. 西安石油大学 材料科学与工程学院,西安 710065
Author(s):
LIU Bin LIU Yun NIU Hui WEI Feng LI Xiao
1.Baoji Petroleum Steel Pipe Co., Ltd., Baoji 721008, Shaanxi, China; 2.Chinese National Engineering Research Center for Petroleum and Natural Gas Tubular Goods Co., Ltd., Baoji 721008, Shaanxi, China ; 3. School of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
关键词:
X80焊接热影响区软化承载能力
Keywords:
X80 welding heat affected zone softening bearing capacity
分类号:
TG445
DOI:
10.19291/j.cnki.1001-3938.2021.12.001
文献标志码:
A
摘要:
为了研究X80钢级焊管多丝焊接头热影响区软化现象,采用显微硬度分析了X80钢级直缝多丝埋弧焊管焊接接头的硬度分布规律,对焊接接头进行硬度试验、拉伸试验及ABAQUS有限元模拟分析。结果表明,热影响区存在明显的软化区,软化程度为14%,拉伸过程中热影响区存在明显的应变集中情况,最终在热影响区发生断裂;随着软化区宽度增大,焊管承压能力下降,但是当软化宽度为20 mm时,仍未达到承载极限;在实际软化宽度情况下,软化程度增加至50%仍未达到软化区屈服强度。采用本研究中四丝内焊+五丝外焊工艺焊接的接头虽然存在明显软化,但其承载能力仍然远高于工作压力,不影响管段的承载能力。
Abstract:
In order to study the softening phenomenon of heat affected zone of X80 steel grade welded pipe multi wire welded joint, the hardness distribution law of X80 steel grade longitudinal pipe multi wire submerged arc welded pipe welded joint was analyzed by microhardness. The hardness test, tensile test and ABAQUS finite element simulation analysis were carried out on the welded joint. The results show that there is an obvious softening zone in the heat affected zone, and the softening degree is 14%. There is an obvious strain concentration in the heat affected zone during the tensile process, and finally fracture occurs in the heat affected zone.With the increase of softening zone width, the bearing capacity of welded pipe decreases, but when the softening width is 20 mm, it still does not reach the bearing limit. In the case of actual softening width, the softening degree increases to 50% and still does not reach the yield strength of softening zone. Although the joint welded by the four wire internal welding + five wire external welding process in this study has obvious softening, its bearing capacity is still much higher than the working pressure, which does not affect the bearing capacity of the pipe section.

参考文献/References:

[1] 卢敏,周晓光,刘振宇,等. 冷却工艺对X80级抗大变形管线钢组织性能的影响[J]. 材料热处理学报,2011,32(7):83-89.[2] 陈延清,杜则裕,许良红. X80管线钢焊接热影响区组织和性能分析[J]. 焊接学报,2010,31(5):101-104,118.[3] 陈小伟,王旭,王立柱,等. X80管线钢焊接热影响区软化问题研究[J]. 焊管,2017,40(6):1-8.[4] 牛靖,张恩涛,吕玉海,等. X70大变形管环焊接头及断裂机制研究[J]. 精密成形工程,2020,12(1):86-91.[5] 周勇,冯雪楠,毕宗岳,等. 低碳微合金管材TIG焊热影响区软化成因分析[J]. 材料导报,2019,33(S1):428-431.[6] 牛靖,陈宏远,刘甲,等. X70大变形钢焊接接头热影响区软化及其影响研究[J]. 热加工工艺,2016(21):176-179.[7] 冯耀荣,吉玲康,李为卫,等. 中国X80管线钢和钢管研发应用进展及展望[J]. 油气储运,2020,39(6):612-622.[8] 谷雨,周小宇,徐凯,等. 高强X90管线钢焊接热影响区脆化及软化行为[J]. 金属热处理,2018,43(6):74-78.[9] 李鹤林,吉玲康,田伟. 高钢级钢管和高压输送:我国油气输送管道的重大技术进步[J]. 中国工程科学,2010,12(5):84-90.[10] 王晓香. 关于管线钢管技术的若干热点问题[J].焊管,2019,42(1):1-9,16.

相似文献/References:

[1]赵春友.中直径直缝双面埋弧焊钢管[J].焊管,2007,30(5):59.[doi:1001-3938(2007)05-0059-02]
 ZHAO Chun-you.Longitudinal Double Submerged Arc Welded Pipe with Medium Diameter[J].,2007,30(12):59.[doi:1001-3938(2007)05-0059-02]
[2]郭瑞杰,付桂英,杨天冰,等.长输油气管道激光焊接技术[J].焊管,2007,30(6):78.[doi:1001-3938(2007)06-0078-03]
 GUO Rui-jie,FU Gui-ying.Laser Welding Technology of Long Distance Pipeline[J].,2007,30(12):78.[doi:1001-3938(2007)06-0078-03]
[3]毕宗岳,张锦刚.连续管焊丝的试验研究[J].焊管,2008,31(1):26.[doi:1001-3938(2008)01-0026-03]
 BI Zong-yue,ZHANG Jin-gang.Testing & Research of Welding Wire Used for Coil Tubing[J].,2008,31(12):26.[doi:1001-3938(2008)01-0026-03]
[4]韩志诚,王少刚,徐凤林,等.双相不锈钢的焊接研究进展[J].焊管,2008,31(3):5.[doi:1001-3938(2008)03-0005-04]
 HAN Zhi-cheng,WANG Shao-gang,XU Feng-lin,et al.Progress of Research on Welding of Duplex Stainless Steel[J].,2008,31(12):5.[doi:1001-3938(2008)03-0005-04]
[5]张盟军,刘换军,张 璐,等.林肯焊机并联技术的应用[J].焊管,2008,31(3):56.[doi:1001-3938(2008)03-0056-02]
 ZHANG Meng-jun,LIU Huan-jun,ZHANG Lu,et al.Parallel Connection Technology Application of Lincoln Welding Machine[J].,2008,31(12):56.[doi:1001-3938(2008)03-0056-02]
[6]周友龙,方永龙,袁卫东,等.T91/TP347H管接头焊接工艺试验研究[J].焊管,2008,31(4):17.[doi:1001-3938(2008)04-0017-04]
 ZHOU You-long,FANG Yong-long,YUAN Wei-dong,et al.Study on Welding Procedure Test of T91/TP347H Pipe Joint[J].,2008,31(12):17.[doi:1001-3938(2008)04-0017-04]
[7]乔桂英,王 旭,付彦宏,等.加热温度和冷却速度对X80级弯管用钢组织与性能的影响[J].焊管,2008,31(6):15.[doi:1001-3938(2008)06-0015-04]
 QIAO Gui-ying,WANG Xu,FU Yan-hong,et al.Effects of Heat Temperature and Cooling Rate on Microstructure and Mechanical Properties of X80 Steel[J].,2008,31(12):15.[doi:1001-3938(2008)06-0015-04]
[8]孔君华,郑 琳,关 云,等.西气东输二线工程用18.4 mm厚 X80级热轧板卷生产实践[J].焊管,2008,31(6):50.[doi:1001-3938(2008)06-0050-04]
 KONG Jun-hua,ZHENG Ling,GUAN Yun,et al.Production Experience of X80 Grade Hot Rolled Coil with 18.4 mm Thickness Used〖JZ〗for the Second West to East Gas Pipeline Project[J].,2008,31(12):50.[doi:1001-3938(2008)06-0050-04]
[9]冯 斌,刘 宇,刘方明.X70级管线钢焊接热裂纹模拟研究[J].焊管,2009,32(1):15.[doi:1001-3938(2009)01-0015-06]
 FENG Bin,LIU Yu,LIU Fang-min.Welding Thermal Crack Simulation Study on X70 Grade Pipeline Steel[J].,2009,32(12):15.[doi:1001-3938(2009)01-0015-06]
[10]黄国建,张英慧,孔祥磊,等.特厚规格X70和X80级热轧卷板的开发与应用[J].焊管,2009,32(2):17.[doi:1001-3938(2009)02-0017-06]
 HUANG Guo-jian,ZHANG Ying-hui,KONG Xiang-lei,et al.Development and Application of X70 & X80 Grade HRC with Heavy Thickness[J].,2009,32(12):17.[doi:1001-3938(2009)02-0017-06]
[11]李国鹏,韩秀林,赵 波,等.X80和X90管线钢热影响区组织与韧性对比[J].焊管,2014,37(7):13.[doi:1001-3938(2014)07-0013-05]
 LI Guopeng,HAN Xiulin,ZHAO Bo,et al.Comparison of Microstructure and Toughness of X80 and X90 Pipeline Heat-affected Zone (HAZ)[J].,2014,37(12):13.[doi:1001-3938(2014)07-0013-05]
[12]高建文,胡建春,宋晞明,等.X80长输油气管道闪光对接焊技术研究[J].焊管,2015,38(10 ):28.[doi:1001-3938(2015)10-0028-04]
 GAO Jianwen,HU Jianchun,SONG Ximing,et al.Research on Flash Butt Welding Process of X80 Long-distance Oil and Gas Pipeline[J].,2015,38(12):28.[doi:1001-3938(2015)10-0028-04]
[13]薛 慧,孔繁荣.X80管线钢低氢焊条根焊技术[J].焊管,2015,38(11):41.[doi:1001-3938(2015)11-0041-03]
 XUE Hui,KONG Fanrong.Low-hydrogen Electrode Root Welding Technology of X80 Pipeline Steel[J].,2015,38(12):41.[doi:1001-3938(2015)11-0041-03]
[14]赵红波,等.焊接热输入对厚壁X80管线钢粗晶热影响区组织及性能的影响[J].焊管,2017,40(9):6.[doi:10.19291/j.cnki.1001-3938.2017.09.002]
 ZHAO Hongbo,BI Zongyue,et al.Influence of Welding Heat Input on Coarse Grain Heat Affect Zone Microstructure and Properties of Thick Wall X80 Pipleline Steel[J].,2017,40(12):6.[doi:10.19291/j.cnki.1001-3938.2017.09.002]

备注/Memo

备注/Memo:
收稿日期:2021-07-29基金项目: 国家重点研发计划项目“高应变海洋管线管研制”(项目编号2018YFC0310300)作者简介:刘 斌(1984—),男,硕士,主要从事高钢级大直径埋弧焊管焊接工艺研究及产品开发工作。
更新日期/Last Update: 2022-01-04