[1]张 敏,雷龙宇,杜明科,等.电弧沉积条件下Cu基熔覆层的微观组织及性能研究[J].焊管,2022,45(5):16-21.[doi:10.19291/j.cnki.1001-3938.2022.05.003]
 ZHANG Min,LEI Longyu,DU Mingke,et al.Study on Microstructure and Properties of Cu based Cladding Layer under Arc Deposition[J].,2022,45(5):16-21.[doi:10.19291/j.cnki.1001-3938.2022.05.003]
点击复制

电弧沉积条件下Cu基熔覆层的微观组织及性能研究()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
45
期数:
2022年第5期
页码:
16-21
栏目:
试验与研究
出版日期:
2022-05-28

文章信息/Info

Title:
Study on Microstructure and Properties of Cu based Cladding Layer under Arc Deposition
文章编号:
10.19291/j.cnki.1001-3938.2022.05.003
作者:
张 敏雷龙宇杜明科张志强高 俊郜雅彦王博玉
1. 西安理工大学 材料科学与工程学院, 西安 710048;2. 西安理工大学 机械与精密仪器工程学院, 西安 710048
Author(s):
ZHANG Min LEI Longyu DU Mingke ZHANG Zhiqiang GAO Jun GAO Yayan WANG Boyu
1. School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China; 2. School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China
关键词:
TIG堆焊Q345B钢Cu基熔覆层微观组织硬度
Keywords:
TIG surfacing Q345B steel Cu based cladding layer microstructure hardness
分类号:
TG113.12
DOI:
10.19291/j.cnki.1001-3938.2022.05.003
文献标志码:
A
摘要:
为了优化Q345B低碳钢的表面使用性能,设计相应的药芯焊丝并采用TIG沉积方法制备了Cu基熔覆层,通过OM、SEM、EDS、XRD和显微硬度测试等方法,研究了Cu基熔覆层的微观组织、元素分布、物相组成、界面元素扩散和表面硬度等。结果显示,在成分过冷的影响下,Cu基熔覆层由界面至顶部形成了不同的晶粒形貌。熔覆层主要由FCC结构的Cu-Ni-Cr-Fe固溶体、富Cr析出相和单质C元素组成,其中,由于微观偏析的存在,固溶体内元素分布不均匀,Ni、Fe元素主要富集在枝晶内,在枝晶间浓度较低;富Cr析出相主要以球状或棒状分布在基体上,少量单质C也在基体内均匀分布。研究表明,得益于合金元素的固溶强化和第二相粒子的第二相强化作用,熔覆层平均硬度达到202.8 HV0.1,高于纯铜和Q345B基体。
Abstract:
In order to optimize the surface performance of Q345B low carbon steel,the corresponding flux-cored welding wire was designed and the Cu based cladding layer was prepared by TIG deposition method. The microstructure, element distribution, phase composition, interface element diffusion and surface hardness of Cu based cladding layer were studied by OM, SEM, EDS, XRD and microhardness test.The results show that under the influence of compositional supercooling, different grain morphologies are formed in the Cu based cladding layer from the interface to the top. The cladding layer is mainly composed of Cu-Ni-Cr-Fe solid solution of FCC structure, Cr-rich precipitation phase and elemental C element. Among them, due to the existence of microsegregation, the distribution of elements in the solid solution is not uniform, and Ni and Fe elements are mainly concentrated in In the dendrite, the concentration between the dendrites is low. The Cr-rich precipitation phase is mainly distributed on the matrix in a spherical or rod shape, and a small amount of elemental C is also uniformly distributed in the matrix. The results show that benefiting from the solid solution strengthening of alloy elements and the second phase strengthening effect of the second phase particles, the average hardness of the cladding layer reaches 202.8 HV0.1, which is higher than that of pure copper and Q345B matrix.

参考文献/References:

[1] 付永红,王亮亮,李楠. 矿山充填耐磨管道发展现状与技术研究[J]. 有色金属设计,2017,44(1):1-4.[2] 张胤彦,冀鸰. 一种耐磨无缝钢管及其制造方法[J]. 冶金管理,2021(9):14-15.[3] 谭丽,秦海滨. 重介选煤厂管路磨损因素分析及耐磨措施[J]. 矿山机械,2012,40(4):58-60.[4] LIU M H,WANG D G,WANG H W, et al. Study on optimization technology to strengthen Ni-based composite coating electroplate containing nanodiamond[J]. Materials,2019,12(10):1654.[5] AMUDHA A, NAGARAJA H S, SHASHIKALA H D. Mechanical and wetting properties of 25%NiCr-75%Cr2C3 cermet coated on low carbon steel using HVOF thermal spray technique[J]. Physica B:Condensed Matter,2020:412409.[6] BARTKOWSKI D,BARTKOWSKA A,JURCI P. Laser cladding process of Fe/WC metal matrix composite coatings on low carbon steel using Yb:YAG disk laser[J]. Optics & Laser Technology,2021,136(2):106784.[7] YE Z Y,LIU Z Y,LI J N,et al. Argon-arc cladding of Q235 low-carbon steel by Co base alloy deposition[J]. Surface Review and Letters,2021,28(4):1-5.[8] 郭煜. 电弧熔覆轻质多元合金熔覆层组织与性能研究[D]. 淮南:安徽理工大学,2020.[9] 马壮,李剑,张璐,等. 氩弧熔覆技术特点及研究现状[J]. 热加工工艺,2012,41(10):162-165.[10] XU H,SUN J S,JIN J,et al. Comparison of structure and properties of Mo2FeB2-based cermets prepared by welding metallurgy and vacuum sintering[J]. Materials,2020,14(1):46.[11] 黄智泉,段嘉旭,杨威,等. 冲击能量对Fe-C-Mo-V堆焊合金抗磨粒磨损性能的影响[J]. 焊接学报,2020,41(12):80-85.[12] 贾华,刘政军,李萌,等. 自保护药芯焊丝明弧堆焊Fe-Cr-C-B-W合金的组织及性能[J]. 焊接学报,2020, 41(3):86-90,101.[13] 杨立军,孙涛,王耀伟,等. TIG电弧制备碳化钨熔覆层组织及性能的研究[J]. 天津大学学报(自然科学与工程技术版),2019,52(8):829-835.[14] 苏允海,梁学伟,邓越,等. FeAlCuCrNiNbx系高熵合金堆焊层的组织及性能分析[J]. 焊接学报,2020,41(4):38-43.[15] 吕竞. 超声复合TIG电弧制备高熵合金熔敷涂层[D]. 哈尔滨:哈尔滨工业大学,2019.[16] 陈雨晴,余敏,曹开,等. 铜基自润滑涂层的研究进展[J]. 表面技术,2021,50(2):91-100,220.[17] 刘宇宁,王云鹏,祝儒飞,等. 耐磨铜合金的研究现状与发展趋势[J]. 机械工程材料,2021,45(1):1-7.[18] LYU X Z,ZHAN Z J,CAO H Y,et al. Microstructure and properties of the laser cladded in-situ ZrB2-ZrC/Cu composite coatings on copper substrate[J]. Surface & Coatings Technology,2020,396(1):125937.[19] 邓德伟,郑海彤,马玉山,等. 激光熔覆制备Cu-18Pb-2Sn涂层的组织与性能研究[J]. 功能材料,2020,51(6):6001-6006.[20] 邓德伟,郑海彤,马玉山,等. 激光重熔对Cu-18Pb-2Sn激光熔覆层组织和性能的影响[J]. 材料热处理学报,2021,42(6):140-146.[21] LI Y N,LIU X B,ZHOU Z K,et al. The microstructure and wear resistance of a copper matrix composite layer on copper via nitrogen-shielded arc cladding[J]. Coatings,2016,6(4):67.[22] 张泽辉. Cu-Cr-Fe-Ni合金组织与性能的研究[D]. 赣州:江西理工大学,2020.[23] 张程煜,王江,张晖,等. Ni或Co的加入对CuCr25合金组织与性能的影响[J]. 稀有金属材料与工程,2001(4):286-289.[24] 李继红,张云龙,杜明科,等. 合金元素对铜/钢接头连接机理及性能的影响[J]. 焊接学报,2021,42(3):34-41,100.[25] 王怀建. 铁白铜焊接接头的组织和力学性能[J]. 热加工工艺,2008(1):57-58.[26] 王瑞,石玗,李广,等. 镍对铜/不锈钢GTAW接头导电性及腐蚀性能的影响[J]. 焊接学报,2019,40(12):53-58,163.

相似文献/References:

[1]葛金火.制管用Q345B带钢性能分析[J].焊管,2011,34(12):58.[doi:1001-3938(2011)12-0058-04]
 GE Jin-huo.Performance Analysis on Q345B Steel Strip[J].,2011,34(5):58.[doi:1001-3938(2011)12-0058-04]
[2]刘振伟,鲍雪君,马立新,等.大壁厚Q345B钢板弯曲开裂原因分析及对策[J].焊管,2021,44(3):58.[doi:10.19291/j.cnki.1001-3938.2021.03.012]
 LIU Zhenwei,BAO Xuejun,MA Lixin,et al.Cause Analysis and Countermeasure of Bending Cracking of Large Wall Thickness Q345B Steel Plate[J].,2021,44(5):58.[doi:10.19291/j.cnki.1001-3938.2021.03.012]
[3]刘永玲,韩 磊,查开旭,等.Q235A钢表面TIG堆焊铜合金的组织和性能研究[J].焊管,2022,45(7):7.[doi:10.19291/j.cnki.1001-3938.2022.07.002]
 LIU Yongling,HAN Lei,ZHA Kaixu,et al.Study on Microstructure and Properties of Q235A Steel Surface TIG Surfacing Copper Alloy[J].,2022,45(5):7.[doi:10.19291/j.cnki.1001-3938.2022.07.002]
[4]周文坤,刁健帅,张 敏,等.氧化物陶瓷颗粒对铜基熔覆层组织演变及性能的影响[J].焊管,2024,47(2):63.[doi:10.19291/j.cnki.1001-3938.2024.02.010]
 ZHOU Wenkun,DIAO Jianshuai,ZHANG Min,et al.Effect of Oxide Ceramic Particles on Microstructure Evolution and Properties of Copper based Cladding Layer[J].,2024,47(5):63.[doi:10.19291/j.cnki.1001-3938.2024.02.010]

备注/Memo

备注/Memo:
收稿日期:2022-01-15基金项目: 国家自然科学基金“低合金钢/镍基合金层状复合材料熔覆层微观组织演变及相调控”(项目编号51974243);陕西省自然科学基础研究计划项目“超高强转子用马氏体不锈钢焊接机理研究及其匹配焊料开发”(项目编号2019JZ-31); 西安市科技计划项目“钛/管线钢层状复合板过渡层焊接材料的研究及匹配焊材开发”(项目编号201805037YD15CG21(16))。作者简介:张 敏(1967—),男,博士,教授,博士生导师,主要从事焊接成形过程的力学行为及其结构质量的控制、焊接凝固过程的组织演变行为及先进焊接材料研究。
更新日期/Last Update: 2022-05-30