[1]李 镇,赵 伟,于克东,等.TC4钛合金激光焊接接头组织及耐蚀性研究[J].焊管,2022,45(10):1-5.[doi:10.19291/j.cnki.1001-3938.2022.10.001]
 LI Zhen,ZHAO Wei,YU Kedong,et al.Microstructure and Corrosion Resistance of TC4 Titanium Alloy Laser Welded Joints[J].,2022,45(10):1-5.[doi:10.19291/j.cnki.1001-3938.2022.10.001]
点击复制

TC4钛合金激光焊接接头组织及耐蚀性研究()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
45
期数:
2022年第10期
页码:
1-5
栏目:
试验与研究
出版日期:
2022-10-28

文章信息/Info

Title:
Microstructure and Corrosion Resistance of TC4 Titanium Alloy Laser Welded Joints
文章编号:
10.19291/j.cnki.1001-3938.2022.10.001
作者:
李 镇赵 伟于克东郭文姗王 佳
1. 齐鲁工业大学(山东省科学院) 机械与汽车工程学院,济南 250353;2. 山东省机械设计研究院,济南 250031
Author(s):
LI Zhen ZHAO Wei YU Kedong GUO Wenshan WANG Jia
1. School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353,China; 2. Shandong Institute of Mechanical Design and Research, Jinan 250031, China
关键词:
TC4钛合金激光焊接微观组织显微硬度耐蚀性
Keywords:
TC4 titanium alloy laser welding microstructure microhardness corrosion resistance
分类号:
TG456.7
DOI:
10.19291/j.cnki.1001-3938.2022.10.001
文献标志码:
A
摘要:
采用光纤激光器对4 mm TC4板材进行对接试验,研究了焊接接头各个区域的组织特点、硬度变化及耐蚀性差异,探究显微组织对硬度及耐蚀性的影响。研究表明,焊接接头焊缝截面形貌为T形,存在少量气孔。焊缝存在粗大的原β柱状晶,晶内组织为细小的马氏体α′相;熔合线附近观察到贯穿热影响区和焊缝的原β柱状晶;热影响区组织为等轴晶,晶内组织为马氏体α′相、少量原始α相和原始β相。焊接接头的显微硬度从母材到焊缝呈现逐渐增加的趋势,至焊缝中心达到最高,约为母材的1.78倍。焊缝显微硬度也存在差异,从焊缝顶端至焊缝底端呈现不断下降的趋势。电化学测试结果表明,焊缝的Rct值分别是母材和热影响区的4.32倍和2.58倍,且具有最高的自腐蚀电位和最小的电流密度,表征为最优耐蚀性。
Abstract:
The butt welding test of 4 mm TC4 plate was carried out by fiber laser. The microstructure characteristics, hardness changes and corrosion resistance differences of each area of welded joints were studied, and the influence of microstructure on hardness and corrosion resistance was explored. The research shows that the weld section morphology of the welded joint is T-shaped and there are a few pores. There are coarse β columnar crystals in the weld, and the microstructure is fine martensite α′ phase. β columnar crystals throughout the heat affected zone and weld are observed near the fusion line. The microstructure of the HAZ is equiaxed, and the in-grain microstructure is martensite α′ phase and a small amount of original α phases and β phases. The microhardness of the welded joint increases gradually from the base metal to the weld, and reaches the highest at the weld center, which is about 1.78 times of the base metal. There are also differences in the microhardness of the weld, which shows a decreasing trend from the top to the bottom of the weld. The electrochemical test results show that the Rct of the weld is 4.32 times of that of the base metal and 2.58 times of that of the heat affected zone, and it has the highest self-corrosion potential and the smallest current density, which characterize the optimal corrosion resistance.

参考文献/References:

[1] SCHUBERT E,KLASSEN M,ZERNER I,et al. Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry[J]. Journal of Marerials Processing Technology,2001,115(1):2-8.[2] ZHANG B G,SHI M X,CHEN G Q,et al. Microstructure and defect of titanium alloy electron beam deep penetration welded joint[J]. Transactions of Nonferrous Metals Society of China,2012,22(11):2633-2637.[3] SINGH P,PUNGOTRA H,KALSI N S. On the characteristics of titanium alloys for the aircraft applications[J].Materials Today:Proceedings,2017,4(8):8971-8982.[4] OLIVERA J P,MIRANDA R M,BRAZ F M. Welding and Joining of NiTi Shape Memory Alloys:A Review[J].Progress in Materials Science,2017(88):412-466.[5] FOMIN F,HORSTMANN M,HUBER N,et al. Probabilistic fatigue-life assessment model for laser-welded Ti-6Al-4V butt joints in the high-cycle fatigue regime[J]. International Journal of Fatigue,2018(116):22-35.[6] GAO X L,ZANG L J,LIU J,et al. Effects of weld cross-section profiles and microstructure on properties of pulsed Nd:YAG laser welding of Ti6Al4V sheet[J]. The International Journal of Advanced Manufacturing Technology,2014,72(5-8):895-903.[7] KUMAR B,BAG S,PAUL C P,et al. Influence of the mode of laser welding parameters on microstructural morphology in thin sheet Ti6Al4V alloy[J]. Optics & Laser Technology,2020(131):106456.[8] LI Y,XU J. Is niobium more corrosion-resistant than commercially pure titanium in fluoride-containing artificial saliva[J]. Electrochimica Acta,2017(233):151-166.[9] APARICIO C,GIL F J,FONSECA C,et al. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications[J]. Biomaterials,2003,24(2):263-273.[10] ERTEK EMRE H. The corrosion behaviour of as-welded and post-weld heat treated Ti6Al4V alloy in simulated body fluid[J]. Materials Letters,2019(254):162-166.[11] DAI N,ZHANG L C,ZHANG J,et al. Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes[J]. Corrosion Science,2016(111):703-710.[12] ATAPOUR M,PILCHAK A L,FRANKEL G S,et al. Corrosion behavior of friction stir-processed and gas tungsten arc-welded Ti-6Al-4V[J]. Metallurgical and Materials Transactions,2010,41(9):2318-2327.[13] CHATTOPADHYAY A,MUVVALA G,SARKAR S,et al. Microstructure,mechanical and corrosion properties of electron beam-welded commercially pure titanium after laser shock peening[J]. The International Journal of Advanced Manufacturing Technology,2021,118(1-2):343-364.[14] GAO F,CUI Y,LYU Y,et al. Microstructure and properties of Ti-6Al-4V alloy welded joint by keyhole gas tungsten arc welding[J]. Materials Science and Engineering,2021(827):142024.[15] BALYANOV A. Corrosion resistance of ultra fine-grained Ti[J]. Scripta Materialia,2004,51(3):225-229.[16] ZHOU L,DENG H,CHEN L,et al. Morphological effects on the electrochemical dissolution behavior of forged and additive manufactured Ti-6Al-4V alloys in runway deicing fluid[J]. Surface and Coatings Technology,2021 (414):127096.

相似文献/References:

[1]任 武,荆 栋,王海飞,等.CT90级连续油管激光焊对接接头的组织及性能研究[J].焊管,2019,42(12):23.[doi:10.19291/j.cnki.1001-3938.2019.12.005]
 REN Wu,JING Dong,WANG Haifei,et al.Research on Microstructure and Properties of Laser Welding Butt Joint for CT90 Coiled Tubing[J].,2019,42(10):23.[doi:10.19291/j.cnki.1001-3938.2019.12.005]
[2]杨晓茹,冉庆选,蒋晓军,等.激光功率对19Cr双相不锈钢焊接接头组织及性能的影响[J].焊管,2022,45(4):55.[doi:10.19291/j.cnki.1001-3938.2022.04.011]
 YANG Xiaoru,RAN Qingxuan,JIANG Xiaojun,et al.Effect of Laser Power on Microstructure and Properties of 19Cr Duplex Stainless Steel Welded Joint[J].,2022,45(10):55.[doi:10.19291/j.cnki.1001-3938.2022.04.011]
[3]王维贤,庄明祥,刘波,等.30 mm退火态TC4钛合金EBW接头组织与性能研究[J].焊管,2023,46(3):13.[doi:10.19291/j.cnki.1001-3938.2023.03.003]
 WANG Weixian,ZHUANG Mingxiang,LIU Bo,et al.Microstructure and Properties of 30 mm Annealed TC4 Titanium Alloy EBW Joints[J].,2023,46(10):13.[doi:10.19291/j.cnki.1001-3938.2023.03.003]
[4]董志伟,唐定狼,张建勋.激光焊接参数对4.5 mm厚TA4板材焊缝成形的影响[J].焊管,2024,47(2):24.[doi:10.19291/j.cnki.1001-3938.2024.02.004]
 DONG Zhiwei,TANG Dinglang,ZHANG Jianxun.Effect of Laser Welding Parameters on Weld Forming of TA4 Plate with 4.5 mm Thickness[J].,2024,47(10):24.[doi:10.19291/j.cnki.1001-3938.2024.02.004]
[5]张颖云,陈素明,李 波.激光焊接参数对1.2 mmTC4钛合金薄板焊缝的影响[J].焊管,2019,42(9):26.[doi:10.19291/j.cnki.1001-3938.2019.9.005]
 ZHANG Yingyun,CHEN Suming,LI Bo.Influence of Laser Welding Parameters on the Weld of TC4 Titanium Alloy with 1.2 mm Thickness[J].,2019,42(10):26.[doi:10.19291/j.cnki.1001-3938.2019.9.005]

备注/Memo

备注/Memo:
收稿日期:2022-07-02基金项目: 国家自然科学基金青年科学基金项目“X80管线钢焊接接头非均匀梯度特征对H2S腐蚀的影响机理研究”(项目编号51805285);山东省重点研发计划(鲁渝科技写作)“大型复杂钢构智能机器人自动化焊接生产线集成与应用示范”(项目编号2021LYXZ014);中国博士后基金面上项目“X80管线钢焊接接头H2S腐蚀非均匀性及其机理研究”(项目编号2019M661016)。作者简介:李 镇(1998—),男,硕士研究生,研究方向为材料连接技术与工艺。
更新日期/Last Update: 2022-10-26