[1]刘 斌,韦 奉,牛 辉,等.微观组织对X80直缝焊管与高压氢相容性影响研究[J].焊管,2022,45(11):1-9.[doi:10.19291/j.cnki.1001-3938.2022.11.001]
 LIU Bin,WEI Feng,NIU Hui,et al.Effect of Microstructure on the Compatibility of X80 Straight Welded Pipe with High Pressure Hydrogen[J].,2022,45(11):1-9.[doi:10.19291/j.cnki.1001-3938.2022.11.001]
点击复制

微观组织对X80直缝焊管与高压氢相容性影响研究()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
45
期数:
2022年第11期
页码:
1-9
栏目:
试验与研究
出版日期:
2022-11-28

文章信息/Info

Title:
Effect of Microstructure on the Compatibility of X80 Straight Welded Pipe with High Pressure Hydrogen
文章编号:
10.19291/j.cnki.1001-3938.2022.11.001
作者:
刘 斌韦 奉牛 辉汪 兵李 拔贾书君刘清友
1. 国家石油天然气管材工程技术研究中心, 陕西 宝鸡 721008;2. 宝鸡石油钢管有限责任公司, 陕西 宝鸡 721008; 3. 钢铁研究总院有限公司, 北京 100081
Author(s):
LIU Bin WEI Feng NIU Hui WANG Bing LI Ba JIA Shujun LIU Qingyou
1.Chinese National Enginnering Research Center for Petroleum and Natural Gas Tubular Goods,Baoji 721008,Shaanxi,China; 2.Baoji Petroleum Steel Pipe Co., Ltd., Baoji 721008, Shaanxi, China; 3.Central Iron and Steel Research Institute, Beijing 100081, China
关键词:
输氢管道高压氢慢拉伸试验组织类型
Keywords:
hydrogen transmission pipeline high pressure hydrogen slow tensile test structure type
分类号:
TG113.25
DOI:
10.19291/j.cnki.1001-3938.2022.11.001
文献标志码:
A
摘要:
为研究不同组织X80直缝焊管与6.3 MPa氢气的相容性,采用扫描电镜分析、高压氢环境缺口试样慢拉伸试验等方法进行分析。结果表明,与6.3 MPa氮气条件相比,针状铁素体组织的Φ1 422 mm钢管母材缺口试样在6.3 MPa氢气中抗拉强度、断面收缩率和拉伸位移损失率分别为5.1 %、10.1 %和1.3 %;多边形铁素体+贝氏体组织的Φ1 219 mm钢管母材缺口试样在6.3 MPa氢气中的抗拉强度、断面收缩率和拉伸位移的损失率分别为4.9 %、62.8 %和13.7 %;针状铁素体Φ1 422 mm钢管母材相比多边形铁素体+贝氏体组织Φ1 219 mm钢管母材在6.3 MPa气态氢环境中具有更好的抗氢脆性能;Φ1 422 mm钢管直焊缝和Φ1 219 mm钢管直焊缝均为多边形铁素体组织;与氮气中相比,Φ1 422 mm钢管直焊缝在6.3 MPa氢气中的抗拉强度、断面收缩率和拉伸位移损失率分别为4.4 %、23.3 %和10.2 %;Φ1 219 mm钢管直焊缝在6.3 MPa氢气中的抗拉强度、断面收缩率和拉伸位移损失率分别为2.7 %、24.7 %和10.4 %。慢拉伸断口微观形貌表明6.3 MPa氢气的气体条件促进了氢致裂纹的萌生。
Abstract:
In order to study the compatibility of two different microstructures X80 straight welded pipes with 6.3 MPa hydrogen, scanning electron microscopy (SEM) and slow tensile test of notched specimen were used to analyse. The results showed that, compared with the properties in 6.3 MPa nitrogen, the loss rates of tensile strength, reduction of area and tensile displacement of the notched specimen of Φ1 422 mm steel pipe base metal with acicular ferrite structure in 6.3 MPa hydrogen were 5.1%, 10.1% and 1.3%; the loss rates of tensile strength, reduction of area and tensile displacement of the notched specimens of Φ1 219 mm steel pipe base material with polygonal ferrite + bainite structure were 4.9 %, 62.8 % and 13.7% respectively in 6.3 MPa hydrogen. The acicular ferrite Φ1 422 mm steel pipe base material has better hydrogen embrittlement resistance than polygonal ferrite + bainite Φ1 219 mm steel pipe base material in 6.3 MPa gaseous hydrogen environment. Both Φ1 422 mm steel pipe straight weld and Φ1 219 mm steel pipe straight weld were polygonal ferrite structure. Compared with nitrogen environment, the loss rates of tensile strength, area reduction and tensile displacement of Φ1 422 mm steel pipe straight weld in 6.3 MPa hydrogen are 4.4%, 23.3% and 10.2% respectively, and the loss rates of tensile strength, area reduction and tensile displacement of Φ1 219 mm steel pipe straight weld in 6.3 MPa hydrogen are 2.7%, 24.7% and 10.4%. The micro morphology of slow tensile fracture showed that 6.3 MPa hydrogen gas condition promoted the initiation of hydrogen induced cracks.

参考文献/References:

[1] 马林聪. 中国氢能产业基础设施发展蓝皮书[M]. 第1版. 北京:中国标准出版社,2016:60-72. [2] WANG S,NAGAO A,SOFRONIS P,et al. Hydrogen-modified dislocation structures in a cyclically deformed ferritic-pearlitic low carbon steel[J]. Acta Materialia,2018(144):164-176.[3] MORE I,BRIOTTET L,LEMOINE P,et al. Hydrogen embrittlement susceptibility of a high strength steel X80[J]. Materials Science and Engineering:A,2010,527(27-28):7252-7260.[4] NANNINGA N E,LEVY Y S,DREXLER E S,et al. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments[J]. Corrosion Science,2012(59):1-9.[5] MORO I,BRIOTTET L,LEMOINE P,et al. Damage under high-pressure hydrogen environment of a high strength pipeline steel X80[C]//Effects of Hydrogen on Materials:Proceeding of 2008 International Hydrogen Conference. [S.l.]:ASM international,2009:357-364.[6] 关鸿鹏,林振娴,李瑜仙,等. X70管线钢及焊缝在模拟煤制气含氢环境下的氢脆敏感性[J]. 工程科学学报,2017,39(4):535-541.[7] 金立果,邢云颖. X80管线钢在含氢煤制气环境中的氢脆敏感性[J]. 腐蚀与防护,2017,38(5):361-364,409.[8] 史昊,邢云颖,王修云. 煤制气环境中氢含量对X80管线钢氢脆敏感性的影响规律[J]. 腐蚀与防护,2018,39(5):336-339,343.[9] 李玉星,张睿,刘翠伟,等. 掺氢天然气管道典型管线钢氢脆行为[J]. 油气储运,2022,41(6):732-742.[10] TROIANO A R. The role of hydrogen and other interstitials in the mechanical behavior of metals[J]. Metallography,Microstructure,and Analysis,2016,5(6): 557-569.[11] ORIANI R A. A mechanistic theory of hydrogen embrittlement of steels[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie,1972,76(8):848-857. [12] NIBUR K A,BAHR D F,SOMERDAY B P. Hydrogen effects on dislocation activity in austenitic stainless steel[J]. Acta Materialia,2006,54(10):2677-2684. [13] WANG S,MARTIN M L,SOFRONIS P,et al. Hydrogen-induced intergranular failure of iron[J]. Acta Materialia,2014(69):275-282. [14] MARTIN M L,FENSKE J A,LIU G S,et al. On the formation and Nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels[J]. Acta Materialia, 2011,59(4):1601-1606. [15] ROBERTSON I M. The effect of hydrogen on dislocation dynamics[J]. Engineering Fracture Mechanics,2001,68(6):671-692.[16] SEZGIN J G,BOSCH C,MONTOUCHET A,et al. Modelling of hydrogen induced pressurization of internal cavities[J]. International Journal of Hydrogen Energy, 2017,42(22):15403-15414. [17] 褚武扬. 氢致开裂和应力腐蚀机理的前沿问题[J]. 腐蚀科学与防护技术,1993(3):151-157. [18] HUANG S,CHEN D K,SONG J,et al. Hydrogen embrittlement of grain boundaries in nickel: an atomistic study[J]. NPJ Computational Materials,2017,3(1):1-8.[19] GERBERICH W W,ORIANI R A,LJI M J,et al. The necessity of both plasticity and brittleness in the fracture thresholds of iron[J]. Philosophical Magazine A, 1991,63(2):363-376.[20] 张颖瑞,董超芳,李晓刚,等. 电化学充氢条件下X70管线钢及其焊缝的氢致开裂行为[J]. 金属学报, 2006,42(5):521-527.[21] 白光乾,王秋岩,邓海全,等. 氢环境下X52管线钢的抗氢性能[J]. 材料导报,2020,34(22):22130-22135.[22] PARK G T,KOH S U,JUNG H G,et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel[J]. Corrosion Science,2008,50(7):1865-1871.[23] ZHAO M C,SHAN Y Y,XIAO F R,et al. Investigation on the H2S-resistant behaviors of acicular ferrite and ultrafine ferrite[J]. Materials Letters,2002,57(1):141-145.

相似文献/References:

[1]钟桂香,郗祥远.输氢管道工程设计要点[J].焊管,2023,46(3):59.[doi:10.19291/j.cnki.1001-3938.2023.03.011]
 ZHONG Guixiang,XI Xiangyuan.Design Key Points of Hydrogen Pipelines[J].,2023,46(11):59.[doi:10.19291/j.cnki.1001-3938.2023.03.011]
[2]宋海辉,毕宗岳,祝少华,等.国内外输氢管道相关标准及技术要求分析[J].焊管,2024,47(1):58.[doi:10.19291/j.cnki.1001-3938.2024.01.010]
 SONG Haihui,BI Zongyue,ZHU Shaohua,et al.Analysis on Technical Requirements and Standards for Domestic and International Hydrogen Transmission Pipelines[J].,2024,47(11):58.[doi:10.19291/j.cnki.1001-3938.2024.01.010]

备注/Memo

备注/Memo:
收稿日期:2002-08-27基金项目: 中国石油天然气集团有限公司前瞻性基础性及战略性技术攻关课题“中长距离管道纯氢/掺氢输送关键技术研究”(项目编号2021DJ5002(JT))。作者简介:刘 斌(1984—),男,硕士,高级工程师,主要从事高钢级大直径埋弧焊管、输氢焊管研究及产品开发工作。
更新日期/Last Update: 2022-11-22