[1]张广成,邬正堃,雷龙宇,等.合金元素对Q345钢表面Cu基熔覆层组织及性能的影响[J].焊管,2022,45(11):21-26.[doi:10.19291/j.cnki.1001-3938.2022.11.004]
 ZHANG Guangcheng,WU Zhengkun,LEI Longyu,et al.Effects of Alloying Elements on Microstructure and Properties of Cu-based Cladding Layers on Q345 Steel[J].,2022,45(11):21-26.[doi:10.19291/j.cnki.1001-3938.2022.11.004]
点击复制

合金元素对Q345钢表面Cu基熔覆层组织及性能的影响()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
45
期数:
2022年第11期
页码:
21-26
栏目:
试验与研究
出版日期:
2022-11-28

文章信息/Info

Title:
Effects of Alloying Elements on Microstructure and Properties of Cu-based Cladding Layers on Q345 Steel
文章编号:
10.19291/j.cnki.1001-3938.2022.11.004
作者:
张广成邬正堃雷龙宇李继红
1. 西安航天动力机械有限公司, 西安 710025; 2. 中国航天科工集团第六研究院210所, 西安 710065; 3. 西安理工大学 材料科学与工程学院, 西安 710048
Author(s):
ZHANG Guangcheng WU Zhengkun LEI Longyu LI Jihong
1. Xi’an Aerospace Power Machinery Co., Ltd., Xi’an 710025, China; 2. The 210th Research Institute of the Sixth Research Institute of China Aerospace Science and Industry Corporation, Xi’an 710065, China; 3. School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
关键词:
电弧熔覆金属粉芯焊丝铜基熔覆层微观组织耐磨性能
Keywords:
arc cladding metal powder-cored wire Cu-based cladding layer microstructure wear resistance
分类号:
TG444.74
DOI:
10.19291/j.cnki.1001-3938.2022.11.004
文献标志码:
A
摘要:
为了提高Q345钢的表面耐磨性以及得到性能优良的铜/钢复合材料,设计了两种Cu-Ni-Cr-C系金属粉芯焊丝,采用GTAW熔覆方法制备了两种铜基熔覆层,并利用SEM、EDS、硬度和摩擦磨损试验对熔覆层的组织和性能进行了研究。试验结果表明:两种熔覆层的基体组织均为Cu-Fe-Ni-Cr固溶体,并由于成分的差异在液相分离作用下产生了不同的析出相。其中,1#熔覆层的析出相主要为粗大的富Fe相,2#熔覆层的析出相以细小的富Cr相为主。两种熔覆层均与Q345钢基体达到了冶金结合,Cu、Cr、Ni、Fe元素在界面处均发生了一定的扩散。另外,得益于固溶强化和第二相强化作用,两种熔覆层的硬度均接近Q345钢基体,且2#熔覆层的硬度高于1#熔覆层,这与析出相的种类和尺寸有关。两种熔覆层均表现出了较好的耐磨性,其中2#熔覆层的摩擦系数略低于1#熔覆层,且磨损量与1#相比大大减少,表明其耐磨性更优。
Abstract:
In order to improve the surface wear resistance of Q345 steel and obtain copper/steel composite materials with excellent properties, two types of Cu-Ni-Cr-C metal powder-cored wires were designed, and two Cu-based cladding layers were prepared by GTAW cladding method. The structure and properties of the cladding layers were studied by SEM, EDS, hardness and wear tests. The test results show that the matrix structure of the two cladding layers is Cu-Fe-Ni-Cr solid solution, and different precipitate phases are produced under the action of liquid phase separation due to the difference in composition. The precipitation phase of 1# cladding layer is mainly coarse Fe-rich phases, and the precipitation phase of 2# cladding layer is mainly fine Cr-rich phases. The two kinds of cladding layers achieved metallurgical bonding with the Q345 steel matrix, and Cu, Cr, Ni, Fe elements all diffused at the interface to a certain extent. In addition, thanks to the solid solution strengthening and the second phase strengthening, the hardness of the two cladding layers is close to that of the Q345 steel matrix, and the hardness of the 2# cladding layer is higher thanthat of the 1# cladding layer, which is related to the type of precipitation related to size. Both cladding layers showed good wear resistance. The friction coefficient of the 2# cladding layer was slightly lower than that of the 1# cladding layer, and the wear amount was greatly reduced compared with that of the 1# cladding layer, indicating its wear resistance is better.

参考文献/References:

[1] WANG Y,GAO Y,LI Y,et al. Review on preparation and application of Copper-Steel bimetal composites[J]. Emerging Materials Research,2019,8(4):538-551.[2] MEITEI R K B,MAJI P,SAMADHIYA A,et al. A study on induction welding of mild steel and copper with flux under applied load condition[J]. Journal of Manufacturing Processes,2018,34(8):435-441.[3] 王勇佳. 合金元素对铜-钢焊接接头组织及性能的影响[D]. 兰州:兰州理工大学,2018.[4] SHCHITSYN Y D,BELININ D S,NEULYBIN S D, et al. Control of Surface Layer Structure with Copper Plasma Surfacing on Steel[J]. Metallurgist,2017,61(7-8): 607-612.[5] PICHUZHKIN S A,VAINERMAN A A,CHERNOBAEV S P,et al. Composition,structure and properties of bimetallic materials prepared by copper alloy surfacing on low-alloy high-strength steel[J]. Metal Science and Heat Treatment,2020(62):1-6.[6] ZHAO L,DU B R,LI K L,et al. Microstructure and tensile properties of Nickel-aluminum bronze coatings on stainless steel SUS630[J]. Materials Science Forum, 2022(6297):37-41.[7] 黄湘湘. 碳钢表面激光熔覆铝青铜合金组织和性能研究[D]. 上海:上海交通大学,2019.[8] 付晨. 钢基铜覆层的激光制备与性能研究[D]. 秦皇岛:燕山大学,2021.[9] 缪喆宇,高义民,王怡然,等. 激光熔覆工艺参数对铜/钢双金属复合材料组织的影响[J]. 铸造,2022,71(2): 151-157.[10] 孔耀,刘宗德,李斌. 铜基耐蚀合金熔覆层的制备及耐蚀特性(英文)[J]. 稀有金属材料与工程,2021,50(8): 2694-2699.[11] WAN L,HUANG Y,LU S,et al. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel[J]. International Journal of Minerals, Metallurgy,and Materials,2016,23(8):920-927.[12] LI Y,LIU X,ZHOU Z,et al. The microstructure and wear resistance of a copper matrix composite layer on copper via nitrogen-shielded arc cladding[J]. Coatings, 2016,6(4):67.[13] 张敏,雷龙宇,杜明科,等. 电弧沉积条件下Cu基熔覆层的微观组织及性能研究[J]. 焊管,2022,45(5): 16-21.[14] 柳世铭. Cu-Fe合金铸态组织演变的实验研究[D]. 沈阳:东北大学,2010.[15] ZHANG M,ZHANG Y L,DU M K,et al. Experimental characterization and microstructural evaluation of silicon bronze-alloy steel bimetallic structures by additive manufacturing[J]. Metallurgical and Materials Transactions A,2021,52(10):1-11.

备注/Memo

备注/Memo:
收稿日期:2022-08-06基金项目: 国家自然科学基金“低合金钢/镍基合金层状复合材料熔覆层微观组织演变及相调控”(项目编号51974243);西安市科技计划项目“钛/管线钢层状复合板过渡层焊接材料的研究及匹配焊材开发”(项目编号201805037YD15CG21(16))。作者简介:张广成(1971—),男,硕士,高级工程师,主要从事固体火箭发动机金属结构件研制生产管理工作。通讯作者:李继红(1973—),男,博士,副教授,研究生导师,主要从事焊接成形过程的力学行为及其结构质量的控制、焊接凝固过程的组织演变行为及先进焊接材料研究。
更新日期/Last Update: 2022-11-22