[1]牛爱军,牛 辉,赵 强,等.基于应变设计的L485海洋管材开发[J].焊管,2022,45(11):31-38.[doi:10.19291/j.cnki.1001-3938.2022.11.006]
 NIU Aijun,NIU Hui,ZHAO Qiang,et al.Development of L485 Marine Pipe based on Strain Design[J].,2022,45(11):31-38.[doi:10.19291/j.cnki.1001-3938.2022.11.006]
点击复制

基于应变设计的L485海洋管材开发()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
45
期数:
2022年第11期
页码:
31-38
栏目:
应用与开发
出版日期:
2022-11-28

文章信息/Info

Title:
Development of L485 Marine Pipe based on Strain Design
文章编号:
10.19291/j.cnki.1001-3938.2022.11.006
作者:
牛爱军牛 辉赵 强黄晓辉席敏敏刘 斌
1. 国家石油天然气管材工程技术研究中心, 陕西 宝鸡 721008;2. 宝鸡石油钢管有限责任公司, 陕西 宝鸡 721008
Author(s):
NIU Aijun NIU Hui ZHAO Qiang HUANG Xiaohui XI Minmin LIU Bin
1. Chinese National Engineering Research Center for Petroleum and Natural Gas Tubular Goods, Baoji 721008, Shaanxi, China; 2. Baoji Petroleum Steel Pipe Co., Ltd., Baoji 721008, Shaanxi, China
关键词:
基于应变设计L485管线钢高应变海底管线双相组织力学性能
Keywords:
strain-based design L485 pipeline steel high strain marine pipelines dual phase microstructure mechanical property
分类号:
TG445
DOI:
10.19291/j.cnki.1001-3938.2022.11.006
文献标志码:
B
摘要:
为了满足海底管道用高应变钢管的需求,采用基于应变设计方法进行了L485海洋管材的开发。采用低C、Nb、Ti 微合金化成分设计和多边形铁素体+贝氏体的双相组织设计,开发出屈强比≤0.80、均匀延伸率≥12.0%、-20 ℃下平均冲击功>400 J的31.8mm厚壁L485钢板,并采用此钢板进行了Φ559 mm×31.8 mm规格L485钢管的试制。对试制出的钢管进行了力学性能测试,测试结果显示,钢管的纵向屈服强度为485~585 MPa,抗拉强度为570~700 MPa,屈强比≤0.85,总伸长率≥25%,均匀延伸率≥7%。试制结果表明,钢管的强度、塑性、韧性等均已达到高应变海洋管研制目标要求。同时,针对存在的屈服强度和应变硬化指数偏下限、热影响区软化等问题,需要从钢板成分及性能、钢管成型及焊接工艺等方面进一步优化设计。
Abstract:
In order to meet the demand of high strain steel pipe for marine pipeline, L485 ocean pipe was developed by strain based design method. The L485 pipeline steel plate of wall thickness 31.8 mm with the strength ratio≤0.80, uniform elongation≥12.0% and average impact energy>400 J at -20 ℃ was developed by using the microalloy-composition design of low C, Nb and Ti and dual phase microstructure design of "polytope ferrite+bainite". The steel plate was used for the trial production of Φ559 mm×31.8 mm L485 steel pipe. The mechanical property test results show that the longitudinal yield strength of the steel pipe is 485~585 MPa, the tensile strength is 570~700 MPa, the strength ratio is 0.85, the total elongation rate is 25%, and the uniform elongation rate is 7%. The test results indicate that the strength, plasticity and toughness of the steel pipe have reached the target requirements of high strain marine pipe development. At the same time, in view of the existing problems such as the lower limit of yield strength and strain hardening index, and the softening of heat affected zone, it is necessary to further optimize the design from the aspects of steel plate composition and performance, and steel pipe forming and welding process.

参考文献/References:

[1] 吴明亮,李永飞. 基于Pro/E的变径管失效分析及结构的优化设计[J]. 化工设备与管道,2010,47(3):39-41.[2] 陶春达,李宗涛,吴明. 内压作用下偏心异径管的应力分析[J]. 石油机械,2012,40(7):89-92.[3] 何兴建,李翔,李军. 不同尺寸异径管的冲蚀数值模拟研究[J]. 化工科技,2015,23(2):20-23.[4] 何兴建,李翔,李军. 不同工况下异径管冲蚀磨损数值模拟研究[J]. 石油化工设备技术,2015,36(3):29-32.[5] 李凡,齐明银,彭玲. 圆管变径局部水头损失的数值模拟[J]. 河北建筑工程学院学报,2017,35(1):99-104.[6] 丁宇奇,兰乘宇,刘巨保,等. 连续管压降计算方法与试验测试[J]. 石油机械,2017,45(2):96-102.[7] 杨美娥,王子兴. 导热油在不同偏心比异径管管内流动特性的研究[J]. 化工设备与管道,2018,55(5):68-71.[8] 索绰,王岳,马文鑫,等. 偏心异径管冷热原油顺序输送混油特性数值模拟[J]. 当代化工,2011,40(10):1087-1090.[9] 王福军.计算流体动力学分析:CFD软件原理与应用[M]. 北京:清华大学出版社,2004.[10] 胡仁喜,康士廷. FLUENT19.0流场分析从入门到精通[M]. 北京:机械工业出版社,2020.[11] 杜广生. 工程流体力学[M]. 北京:中国电力出版社,2014.[12] 中国机械工业联合会.钢制对焊管件类型与参数:GB/T 12459—2017[S]. 北京:中国标准出版社,2017.

相似文献/References:

[1]张 华,赵新伟,罗金恒,等.基于灰色关联度法的管道临界屈曲应变影响因素分析[J].焊管,2008,31(2):77.[doi:1001-3938(2008)02-0077-05]
 ZHANG Hua,ZHAO Xin-wei,LUO Jin-heng,et al.Discussion of the Influencing Factor on the Critical Buckling Strain for Pipelines Based on Gray Correlation Analysis[J].,2008,31(11):77.[doi:1001-3938(2008)02-0077-05]
[2]马小芳,谢文江.输送管线基于应变的设计方法在我国的前景与展望[J].焊管,2010,33(4):62.[doi:1001-3938(2010)04-0062-04]
 MA Xiao-fang,XIE Wen-jiang.The Prospect of Transfer Pipeline Based on Strain Design in China[J].,2010,33(11):62.[doi:1001-3938(2010)04-0062-04]
[3]孙 奇,赵 波,王晓香,等.基于应变设计的X100 钢管生产和开发[J].焊管,2011,34(6):66.[doi:1001-3938(2011)06-0066-06]
 Edited and Translated by SUN Qi,ZHAO Bo,WANG Xiao-xiang,et al.Development and Production of X100 Steel Pipe Based on Strain Design[J].,2011,34(11):66.[doi:1001-3938(2011)06-0066-06]
[4]孙 宏 编译.基于应变设计的UOE与螺旋焊管的评价[J].焊管,2012,35(8):68.[doi:1001-3938(2012)08-0068-08]
 Edited and Translated by SUN Hong.Evaluation of UOE and SAWH Pipe Based on Strain Design[J].,2012,35(11):68.[doi:1001-3938(2012)08-0068-08]
[5]王 旭,罗 超,陈小伟,等.我国抗大变形管线管的研制进展[J].焊管,2013,36(6):5.[doi:1001-3938(2013)06-0005-07]
 WANG Xu,LUO Chao,CHEN Xiaowei,et al.Development Progress of China Domestic High-deformability Line Pipe[J].,2013,36(11):5.[doi:1001-3938(2013)06-0005-07]
[6]隋永莉.大应变钢管在管道建设中的应用及现场焊接技术[J].焊管,2013,36(6):32.[doi:1001-3938(2013)06-0032-05]
 SUI Yongli.Application and Field Welding Technology of Large Strain Steel Pipe in Pipeline Construction[J].,2013,36(11):32.[doi:1001-3938(2013)06-0032-05]
[7]王东超,宗秋丽,王胜利,等.基于应变设计X70M钢落锤断口成因分析[J].焊管,2014,37(6):53.[doi:1001-3938(2014)06-0053-05]
 WANG Dongchao,ZONG Qiuli,WANG Shengli,et al.Cause Analysis on X70M DWTT Fracture Based on Strain Design Material[J].,2014,37(11):53.[doi:1001-3938(2014)06-0053-05]
[8]柏明卓,郑 磊,张 备,等.基于应变设计用X70大直径UOE管线管的研发[J].焊管,2015,38(1):21.[doi:1001-3938(2015)01-0021-07]
 BAI Mingzhuo,ZHENG Lei,ZHANG Bei,et al.Research and Development of X70 Large Diameter UOE Line Pipefor Strain-based Design Application[J].,2015,38(11):21.[doi:1001-3938(2015)01-0021-07]
[9]郑 伟,张 宏,刘啸奔,等.基于应变设计方法在新粤浙断层区管道上的应用[J].焊管,2015,38(4):38.[doi:1001-3938(2015)04-0038-05]
 ZHENG Wei,ZHANG Hong,LIU Xiaoben,et al.Application of the Strain-based Design Method in Area of fault of XinYueZhe Pipeline[J].,2015,38(11):38.[doi:1001-3938(2015)04-0038-05]
[10]孙 宏,孙志刚,李建一,等.螺旋埋弧焊管的各向异性及其抗变形性能研究[J].焊管,2017,40(7):12.[doi:10.19291/j.cnki.1001-3938.2017.07.003]
 SUN Hong,SUN Zhigang,LI Jianyi,et al.Anisotropy and Its Anti-deformation Properties of SSAW Pipe[J].,2017,40(11):12.[doi:10.19291/j.cnki.1001-3938.2017.07.003]

备注/Memo

备注/Memo:
收稿日期:2022-06-22基金项目: 国家重点研发计划项目“高应变海洋管线管研制”(项目编号2018YFC0310300)。作者简介:江 帆(1996—),男,硕士,工程师,现主要从事冶金设计和数值模拟研究工作。
更新日期/Last Update: 2022-11-22