[1]于克东,赵伟,李镇,等.扫描速度对等离子熔覆WC增强镍基合金涂层组织与耐蚀性的影响[J].焊管,2023,46(3):20-25.[doi:10.19291/j.cnki.1001-3938.2023.03.004]
 YU Kedong,ZHAO Wei,LI Zhen,et al.Study on Influence of the Scanning Speed on Microstructure and Corrosion Resistance of Plasma Cladding WC Reinforced Nickel based Alloy Coating[J].,2023,46(3):20-25.[doi:10.19291/j.cnki.1001-3938.2023.03.004]
点击复制

扫描速度对等离子熔覆WC增强镍基合金涂层组织与耐蚀性的影响()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
46
期数:
2023年第3期
页码:
20-25
栏目:
试验与研究
出版日期:
2023-03-28

文章信息/Info

Title:
Study on Influence of the Scanning Speed on Microstructure and Corrosion Resistance of Plasma Cladding WC Reinforced Nickel based Alloy Coating
文章编号:
10.19291/j.cnki.1001-3938.2023.03.004
作者:
于克东赵伟李镇郭文姗王佳
1. 齐鲁工业大学(山东省科学院)机械与汽车工程学院,济南 250353; 2. 山东省机械设计研究院,济南 250031
Author(s):
YU Kedong ZHAO Wei LI Zhen GUO Wenshan WANG Jia
1. School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; 2. Shandong Institute of Mechanical Design and Research, Jinan 250031, China
关键词:
等离子熔覆镍基合金合金涂层WC颗粒耐蚀性
Keywords:
Key words: plasma cladding nickel based alloy alloy coating WC particles corrosion resistance
分类号:
TG174.3
DOI:
10.19291/j.cnki.1001-3938.2023.03.004
文献标志码:
A
摘要:
为了提高金属材料的表面性能,通过等离子熔覆技术,在低碳钢表面制备了35%WC+65%Ni60合金涂层,研究了不同扫描速度对涂层组织与耐蚀性的影响。涂层组织分析及电化学性能试验结果显示:WC-Ni合金涂层的表面光滑连续,并存在良好的冶金结合,其稀释率先减小后增加;涂层的底部组织由树枝晶和大尺寸的WC颗粒构成,顶部组织由树枝晶/等轴晶和微米级WC颗粒构成;随着扫描速度的增加,涂层组织由等轴晶向树枝晶转变;当扫描速度为120 mm/min时,涂层自腐蚀电位最高,自腐蚀电流密度最小,耐蚀性最好。研究表明,当涂层具有均匀的组织、尺寸小的WC颗粒和固溶越多的W元素时,涂层具有良好的耐蚀性。
Abstract:
In order to improve the surface properties of metal materials, 35% WC+65% Ni 60 alloy coating was prepared on the surface of low carbon steel by plasma cladding technology, and the effect of different scanning speed on the microstructure and corrosion resistance of the coating was studied. The results of coating structure analysis and electrochemical performance test show that the surface of WC - Ni alloy coating is smooth and continuous, and there is good metallurgical bonding. Its dilution decreases first and then increases. The bottom structure of the coating is composed of dendrite and large size WC particles, and the top structure is composed of dendrite/equiaxed crystal and micron WC particles. With the increase of scanning speed, the microstructure of the coating changes from equiaxed crystal to dendrite. When the scanning speed is 120 mm/min, the coating has the highest corrosion potential, the lowest corrosion current density and the best corrosion resistance. The results show that the coating has good corrosion resistance when it has uniform structure, small WC particles and more W elements in solid solution.

参考文献/References:

[1]GUO H,LI B,LU C,et al.Effect of WC–Co content on the microstructure and properties of NiCrBSi composite coatings fabricated by supersonic plasma spraying[J].Journal of Alloys and Compounds,2019(789):966-975.[2]张渊,雷旻,程晨,等.TC4钛合金表面等离子熔覆Ni60涂层的性能[J]. 中国表面工程,2021,34(2):86-93.[3]WENG Z,WANG A,WU X,et al.Wear resistance of diode laser?lad Ni/WC composite coatings at different temperatures[J].Surface and Coatings Technology,2016(304):283-292.[4]秦利锋.TiC添加量对等离子熔覆Ni60–WC复合涂层性能的影响[J].电镀与涂饰,2021,40(20):1551-1555.[5]PAN C,GONG M,FENG S,et al.Corrosion and thermal fatigue behaviors of induction?lad Ni-coated TiC particle?einforced Ni60 coating in molten aluminum alloy[J].Surface and Coatings Technology,2021,419(9):127278.[6]ZHANG C,XU J,SUN G,et al.Wear behaviors of 5 wt % SiO2–Ni60 coatings deposited by atmospheric plasma spraying under dry and water?ubrication sliding conditions[J].Wear,2021(470-471):203621.[7]YANG X T,LI X Q,YANG Q B,et al.Effects of WC on microstructure and corrosion resistance of directional structure Ni60 coatings[J].Surface and Coatings Technology,2020,385(1):125359.[8]刘祥庆,郭志猛,高克玮,等.感应熔覆Ni60涂层显微组织及耐蚀性[J]. 材料热处理学报,2012,33(S1):96-100.[9]魏鑫.45钢表面感应熔覆Ni60涂层及WC-Ni60复合涂层的研究[D].大连:大连理工大学,2010.[10]杜竞楠,董刚,邓琦林,等.激光熔覆NbC/Ni60合金复合涂层的组织与性能[J].应用激光,2012,32(4):277-281.[11]NIU Z,XU J,WANG T,et al.Microstructure, mechanical properties and corrosion resistance of CoCrFeNiW (x = 0, 0.2, 0.5) high entropy alloys[J].Intermetallics,2019(112):106550.[12]ZHOU S,XU T,HU C,et al.A comparative study of tungsten carbide and carbon nanotubes reinforced Inconel 625 composite coatings fabricated by laser cladding[J].Optics & Laser Technology,2021(140):106967.[13]CUI P,BAO Z,LIU Y,et al.Corrosion behavior and mechanism of dual phase Fe1.125Ni1.06CrAl high entropy alloy[J].Corrosion Science,2022(201):110276.[14]ZHANG H,LIU Y,BAI X,et al.Laser cladding highly corrosion?esistant nano/submicron ultrafine?rained Fe?ased composite layers[J].Surface and Coatings Technology,2021(424):127636.[15]ZHOU Z,WANG L,ZHAO X,et al.Effects of W addition on the corrosion behaviors of FeCoNiCrMn high entropy alloy composites in the 3.5 wt.% NaCl solution[J].Surfaces and Interfaces,2021(23):100956.

相似文献/References:

[1]许小波,李华山,佟 彤,等.X65钢管内壁堆焊镍基合金的工艺探索[J].焊管,2015,38(10 ):32.[doi:1001-3938(2015)10-0032-04]
 XU Xiaobo,LI Huashan,TONG Tong,et al.Technology Exploration of Nickel-based Alloy Surfacing in X65 Grade Steel Pipe Inner Wall[J].,2015,38(3):32.[doi:1001-3938(2015)10-0032-04]
[2]谌铁强,宋 欣,白学军,等.压下率对轧制X65MS/镍基耐蚀合金复合板性能的影响[J].焊管,2015,38(11):9.[doi:1001-3938(2015)09-0009-06]
 CHEN Tieqiang,SONG Xin,BAI Xuejun,et al.Effect of Reduction Rate on Property of X65MS and Nickel-based Corrosion Resistant Alloy Rolling Clad Plate[J].,2015,38(3):9.[doi:1001-3938(2015)09-0009-06]
[3]张淑雁,任旭升,徐 成,等.Inconel 625镍基合金带极电渣堆焊试验研究[J].焊管,2016,39(11):9.[doi:10.19291/j.cnki.1001-3938.2016.11.003]
 ZHANG Shuyan,REN Xusheng,XU Cheng,et al.Experiments Study on Inconel 625 Nickel-Based Alloy Strip with Electroslag Cladding[J].,2016,39(3):9.[doi:10.19291/j.cnki.1001-3938.2016.11.003]
[4]王兴阳,王 虎.NbC含量对钢表面AlCoCrCuFeNiMn(NbC)x高熵合金组织和性能的影响[J].焊管,2022,45(6):8.[doi:10.19291/j.cnki.1001-3938.2022.06.002]
 WANG Xingyang,WANG Hu.Effect of NbC Content on Microstructure and Properties of AlCoCrCuFeNiMn(NbC)x High Entropy Alloy on Steel Surface[J].,2022,45(3):8.[doi:10.19291/j.cnki.1001-3938.2022.06.002]
[5]程 龙,孟庆海,白晓琳,等.Inconel601镍基高温合金焊接工艺研究[J].焊管,2022,45(7):37.[doi:10.19291/j.cnki.1001-3938.2022.07.007]
 CHENG Long,MENGQinghai,BAI Xiaolin,et al.Study of Welding Process on Inconel601 Nickel-based Superalloys[J].,2022,45(3):37.[doi:10.19291/j.cnki.1001-3938.2022.07.007]

备注/Memo

备注/Memo:
收稿日期:2022-07-02基金项目:国家自然科学基金“X80管线钢焊接接头非均匀梯度特征对H2S腐蚀的影响机理研究”(项目编号51805285);山东省高等学校“青创科技支持计划”、“亚微-纳刀具激光熔覆成形制备及其切削机理研究 ”(项目编号2021KJ026)。作者简介:于克东(1997—),男,硕士研究生,研究方向为材料表面改性及强化。
更新日期/Last Update: 2023-03-23