[1]陈浩.基于ALOHA 的输气管道泄漏危害范围研究[J].焊管,2023,46(5):44-49.[doi:10.19291/j.cnki.1001-3938.2023.05.007]
 CHEN Hao.Study on the Damage Range of Gas Pipeline Leakage Based on ALOHA[J].,2023,46(5):44-49.[doi:10.19291/j.cnki.1001-3938.2023.05.007]
点击复制

基于ALOHA 的输气管道泄漏危害范围研究()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
46
期数:
2023年第5期
页码:
44-49
栏目:
应用与开发
出版日期:
2023-05-28

文章信息/Info

Title:
Study on the Damage Range of Gas Pipeline Leakage Based on ALOHA
文章编号:
10.19291/j.cnki.1001-3938.2023.05.007
作者:
陈浩
中海石油(中国)有限公司深圳分公司陆丰油田作业区,广东 深圳 518067
Author(s):
CHEN Hao
Lufeng Oilfield Operation Area of CNOOC Shenzhen Branch, Shenzhen 518067, Guangdong, China
关键词:
输气管道管道泄漏管道动态模拟管道压力管道长度
Keywords:
gas pipeline pipeline leakage pipeline dynamic monitoring pipeline pressure pipeline length
分类号:
TE88
DOI:
10.19291/j.cnki.1001-3938.2023.05.007
文献标志码:
A
摘要:
为提高输气管道泄漏危害范围的预测精度,以便在管体泄漏发生时快速合理的设置警戒区域。通过控制变量法,利用ALOHA软件对输气管道泄漏事故进行动态模拟和后果趋势分析,并结合多元线性回归拟合影响因素与伤害距离的关系。结果表明,管道长度、管道压力的增大会使管道泄漏导致的危害范围增大,随着泄露孔径的增大,危害范围呈现先增大后减小的趋势,风速增大、地面粗糙度的增加,有利于减小泄漏导致的危害范围;多元线性回归的拟合精度较高,平均相对误差为2.15%;单因素分析表明,泄漏孔径、管道长度、管道压力、风速对泄漏导致的危害范围影响显著,而地面粗糙度对危害范围的影响不显著;通过在最不利条件下进行实地模拟,发现室内外的甲烷扩散体积分数超过了AEGL-1的极限值,说明居民区与管道的安全距离不够,应扩大安全距离或采取其他必要的防护措施。研究结果可为输气管道泄漏事故的有效预防和应急处理提供实际参考。
Abstract:
In order to improve the prediction accuracy of the damage range of gas pipeline leakage, the warning area can be set up quickly and reasonably when the leakage occurs. Through the control variable method, ALOHA software was used to carry out dynamic monitoring and consequence trend analysis of gas pipeline leakage accidents, and combined with multiple linear regression to fit the relationship between influencing factors and injury distance. The results show that the increase of pipe length and pipe pressure will increase the damage range of leakage. With the increase of leakage aperture, the damage range increases first and then decreases. The increase of wind speed and ground roughness is beneficial to reduce the leakage damage range. The fitting accuracy of multiple linear regression is high, and the average relative error is 2.15%. The single factor leakage aperture, pipeline length, pipeline pressure and wind speed have significant effects on the damage range, while the ground roughness has no significant effect on the damage range. Outdoor and indoor methane diffusion volume fractions were obtained by field simulations under the most adverse conditions. The research results can provide practical reference for effective prevention and emergency treatment of gas pipeline leakage accidents.

参考文献/References:

[1] 李新宏,韩子月,卢才武,等.老龄城镇油气管道失效风险评价方法[J]. 中国安全科学学报,2020,30(2):93-98.[2] 王向阳,杜美萍,汪彤,等.埋地燃气管道泄漏扩散过程数值模拟[J].中国安全科学学报,2018,28(2):45-50.[3] 刘爱华,陈柯,黄检,等.土壤-大气中燃气泄漏扩散规律研究[J].中国安全科学学报,2018,28(2):31-37.[4] 霍春勇,董玉华,余大涛,等.长输管线气体泄漏率的计算方法研究[J].石油学报,2004,25(1):101-105.[5] 彭星煜,范张川,朱敏,等.基于SAFETI模拟的大气条件对天然气扩散影响的研究[J].科学技术与工程,2017,17(1):125-131.[6] 马庆春,张博.基于ALOHA的城市燃气管道泄漏火灾爆炸影响区域的数值模拟[J].安全与环境工程,2016,23(2):75-79.[7] 杨小刚.城市燃气管线泄漏强度实验测定及扩散浓度模拟[D].哈尔滨:哈尔滨工业大学,2009.[8] 王有智,吴明,杜金,等.基于FLACS的食堂天然气泄漏爆炸事故后果模拟[J].辽宁石油化工大学学报,2022,42(1):35-40.[9] 李云涛,张振永,刘玉卿,等.天然气管道全管径断裂事故影响范围研究[J].中国安全科学学报,2020,30(9):149-154.[10] 徐杰,高海康,吴志强,等.基于GIS的管道应急态势标绘技术研究[J].石油化工自动化,2022,58(2):68-72.[11] 杨冬冬,陈国明,付建民,等.海洋平台含硫化氢天然气泄漏爆炸连锁事故后果动态评估[J].化工进展,2021,40(11):6393-6400.

相似文献/References:

[1]黄志潜.遵循正确的技术方向 合理确定西气东输二线技术方案[J].焊管,2007,30(6):5.[doi:1001-3938(2007)06-0005-06]
 HUANG Zhi-qian.Rationally Design the Technical Parameters for the Second WEGP Project Based on the Verified Developing Trend of Technology[J].,2007,30(5):5.[doi:1001-3938(2007)06-0005-06]
[2]Satoshi IGI 伊木.中国西气东输二线管道延性断裂分析(一)[J].焊管,2008,31(2):23.[doi:1001-3938(2008)02-0023-04]
 Satoshi IGI.Analysis on Ductile Fracture of the Second West to East Gas Pipeline Project[J].,2008,31(5):23.[doi:1001-3938(2008)02-0023-04]
[3]Satoshi IGI 伊木.中国西气东输二线管道延性断裂分析(二)[J].焊管,2008,31(3):33.[doi:1001-3938(2008)03-0033-06]
 Satoshi IGI.Analysis on Ductile Fracture of the Second West to East Gas Pipeline Project[J].,2008,31(5):33.[doi:1001-3938(2008)03-0033-06]
[4]谢航超.输气管道内减阻涂料黏度对钢管内喷涂的影响[J].焊管,2014,37(8):59.[doi:1001-3938(2014)08-0059-04]
 XIE Hangchao.Influence on Steel Pipe internal Coating of Internal Resistance-reducing Coating Viscosity for Gas Pipeline[J].,2014,37(5):59.[doi:1001-3938(2014)08-0059-04]
[5]许贵芝 编译.大直径输气管道焊接热循环的复制研究[J].焊管,2014,37(9):69.[doi:1001-3938(2014)09-0069-04]
 Edited and Translated by XU Guizhi.Research on Welding Thermal Cycle Replication of Large Diameter Gas Pipeline[J].,2014,37(5):69.[doi:1001-3938(2014)09-0069-04]
[6]杨继平,毛浓召,杜 华,等.输气管道内壁无溶剂内减阻环氧涂层的应用研究[J].焊管,2015,38(1):33.[doi:1001-3938(2015)01-0033-05]
 YANG Jiping,MAO Nongzhao,DU Hua,et al.Study on the Application of Solvent-free Inner Resistance-reducing Epoxy Coating Used in Gas Pipeline Internal Wall[J].,2015,38(5):33.[doi:1001-3938(2015)01-0033-05]
[7]张晓存,薛继军.埋地输气管线腐蚀综合评价[J].焊管,2015,38(1):66.[doi:1001-3938(2015)01-0066-03]
 ZHANG Xiaocun,XUE Jijun.Comprehensive Assessment for the Corrosion of Buried Gas Pipeline[J].,2015,38(5):66.[doi:1001-3938(2015)01-0066-03]
[8]孙 宏,栾 涛,宗秋丽,等.高钢级管线钢的延性断裂: CVN和DWTT动态冲击试样应力状态和能量的研究[J].焊管,2020,43(10):56.[doi:10.19291/j.cnki.1001-3938.2020.10.010]
 Translated by SUN Hong,LUAN Tao,ZONG Qiuli,et al.Ductile Fracture of Advanced Pipeline Steels: Study of Stress States and Energies in Dynamic Impact Specimens-CVN and DWTT[J].,2020,43(5):56.[doi:10.19291/j.cnki.1001-3938.2020.10.010]
[9]刘迎来,许 彦,张 超,等.输气管道在役修复过程中温度场分布的研究[J].焊管,2021,44(11):1.[doi:10.19291/j.cnki.1001-3938.2021.11.001]
 LIU Yinglai,XU Yan,ZHANG Chao,et al.Study on Temperature Field Distribution during in-service Repair of Natural Gas Pipeline[J].,2021,44(5):1.[doi:10.19291/j.cnki.1001-3938.2021.11.001]

备注/Memo

备注/Memo:
收稿日期:2022-07-27作者简介:陈浩(1990—),男,四川内江人,工程师,主要从事海洋石油开采工作。
更新日期/Last Update: 2023-05-23