[1]欧阳欣,李鹤,闫锋,等.输送工艺参数对密相/超临界CO2管道止裂韧性的影响[J].焊管,2023,46(6):1-6.[doi:10.19291/j.cnki.1001-3938.2023.06.001]
 OUYANG Xin,LI He,YAN Feng,et al.Influence of Transmission Process Parameters on Crack Arresting Toughness of Dense Phase/Supercritical CO2 Pipeline[J].,2023,46(6):1-6.[doi:10.19291/j.cnki.1001-3938.2023.06.001]
点击复制

输送工艺参数对密相/超临界CO2管道止裂韧性的影响()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
46
期数:
2023年第6期
页码:
1-6
栏目:
试验与研究
出版日期:
2023-06-28

文章信息/Info

Title:
Influence of Transmission Process Parameters on Crack Arresting Toughness of Dense Phase/Supercritical CO2 Pipeline
文章编号:
10.19291/j.cnki.1001-3938.2023.06.001
作者:
欧阳欣李鹤闫锋李胜男池强
1. 国家石油天然气管网集团有限公司科学技术研究总院分公司,河北 廊坊 065000;2. 中国石油集团工程材料研究院有限公司 石油管材及装备材料服役行为与结构安全国家重点实验室,西安 710077
Author(s):
OUYANG Xin LI He YAN Feng LI Shengnan CHI Qiang
1. Science and Technology Research Institute, National Oil and Natural Gas Pipeline Network Group Company Limited, Langfang 065000, Hebei, China; 2. CNPC Engineering Materials Research Institute Co., Ltd., State Key Laboratory of Service Behavior and Structural Safety of Petroleum Pipe and Equipment Materials, Xi’an 710077, China
关键词:
CO2输送管道密相/超临界CO2止裂韧性断裂控制
Keywords:
CO2 pipeline dense phase/supercritical CO2 arrest toughness fracture control
分类号:
TG113.255
DOI:
10.19291/j.cnki.1001-3938.2023.06.001
文献标志码:
A
摘要:
为了研究密相/超临界CO2输送管道的止裂性能,以密相/超临界CO2长输管道断裂控制为研究目标,针对实际工况,基于GERG-2008状态方程、BTC双曲线模型和X65管道,计算分析了燃烧后捕获、燃烧前捕获和富氧燃烧捕获三种捕获方式下CO2气质组分、初始温度、初始压力、管径和设计系数等对压力温度(P-T)状态、减压波曲线、止裂韧性的影响。结果发现,杂质组分的增加以及提高初始温度、增大管径、增大设计系数会导致密相/超临界CO2输送管道止裂韧性增加;而提高初始压力会导致密相/超临界CO2输送管道止裂韧性降低;燃烧后捕获产生的CO2混合物输送管道所需的止裂韧性最小,富氧燃烧捕获产生的CO2混合物输送管道所需的止裂韧性最高。该结果可为CO2管道设计和工程应用提供理论依据。
Abstract:
In order to study the arrest toughness of dense phase/supercritical CO2 transmission pipeline, the fracture control of dense phase/supercritical CO2 long distance transmission pipeline was taken as the research objective. According to the actual working conditions, based on GERG-2008 state equation, BTC model and X65 pipeline,under three capture methods including post?ombusion, pre?ombusion and oxyfuel, the influences of the CO2 gas composition, initial temperature, initial pressure, pipe diameter and design coefficient to pressure temperature (P?) state, decompression wave curve, and arrest toughness are calculated and analyzed . It was found that the increasing of impurity components, the initial temperature, the pipe diameter and the design coefficient can lead to an increase of arrest toughness of dense phase/supercritical CO2 transmission pipeline. Increasing the initial pressure will lead to a decrease in the arrest toughness of dense phase/supercritical CO2 transmission pipelines. The transmission pipeline of CO2 mixture captured after combustion requires the least cracking toughness. The transmission pipeline of CO2 mixture captured by oxyfuel method requires the highest cracking toughness. The result can provide a theoretical basis for the design and engineering application of CO2 pipelines.

参考文献/References:

[1] 蔡博峰,李琦,张贤,等.中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)中国CCUS路径研究[R].武汉:中国科学院武汉岩土力学研究所,2021:40-42.[2] 胡其会,李玉星,张建,等. “双碳”战略下中国CCUS技术现状及发展建议[J].油气储运, 2022, 41(4): 361-371.[3] IEA. Energy technology perspectives 2020special report on carbon capture utilization and storage[R]. Paris: International Energy Agency, 2020: 103-109.[4] 张贤,李阳,马乔,等.我国碳捕集利用与封存技术发展研究[J].中国工程科学, 2021, 23(6): 1-12.[5] 黄维和,宫敬,王军.碳中和愿景下油气储运学科的任务[J].油气储运, 2022, 41(6): 607-613.[6] 李鹤林,霍春勇,池强,等.输送管产品开发与工程应用技术支撑体系[J].油气储运,2020, 39(7): 721-729.[7] BUMB P, DESIDERI U, QUATTROCCHI F, et al. Cost optimized CO2 pipeline transportation grid: a case study from Italian industries[J]. International Journal of Environmental and Ecological Engineering, 2009, 3(10): 312-319.[8] 霍春勇,李鹤,张伟卫,等. X80钢级1 422mm大口径管道断裂控制技术[J].天然气工业, 2016, 36(6): 78-83.[9] 陈磊,闫兴清,胡延伟,等.二氧化碳管道意外泄漏减压过程的断裂控制研究进展[J].化工进展, 2022, 41(3): 1241-1255.[10] MAHGEREFTEH H, BROWN S, MARTYNOV S. A study of the effects of friction, heat transfer, and stream impurities on the decompression behavior in CO2 pipelines[J]. Greenhouse Gas Science Technology, 2012, 2(5): 369-379.[11] JAGER A, SPAN R. Equation of state for solid carbon dioxide based on the gibbs free energy[J]. Journal of Chemical & Engineering Data, 2012, 57(2): 590-597.[12] ELSHAHOMI A, CHENG L, MICHAL G, et al. Decompression wave speed in CO2, mixtures: CFD modelling with the GERG 2008 equation of state[J]. Applied Energy,2015,140(15): 20-32.[13] TENG L, LI Y X, ZHAO Q, et al. Decompression characteristics of CO2 pipelines following rupture[J]. Journal of Natural Gas Science and Engineering,2016(36): 213-223.[14] 顾帅威,滕霖,李玉星,等.含杂质气态CO2管道减压波传播特性[J].石油化工,2018, 47(7): 689-695.[15] 李玉星,王财林,胡其会,等.含杂质超临界CO2管道减压波波速的预测模型[J].油气储运, 2021, 40(9): 1027-1032.[16] OOSTERKAMP T, RAMSEN J. State of the art overview of CO2 pipeline transport with relevance to offshore pipelines report[J].The International Journal of Corrosion Processes and Corrosion Control,2017,52(7):485-509.

备注/Memo

备注/Memo:
收稿日期:2023-01-19基金项目: 中国石油天然气集团有限公司基础研究和战略储备技术研究项目“CO2管道断裂控制理论研究”(项目编号2017D5008(2018Z—04));国家石油天然气管网集团有限公司课题“超临界二氧化碳管道输送技术研究”(项目编号SSCC202107);陕西省秦创原“科学家+工程师”队伍建设项目“密相/超临界CO2管道断裂控制研究”(项目编号2022KXJ—085)。作者简介:李鹤(1978—),男,博士研究生,教授级高工,主要从事油气管道断裂控制方向研究。
更新日期/Last Update: 2023-06-30