[1]李明,蔡亮,李杉,等.基于CFD的输油管道腐蚀特性分析[J].焊管,2023,46(9):53-58.[doi:10.19291/j.cnki.1001-3938.2023.09.009]
 LI Ming,CAI Liang,LI Shan,et al.Analysis of Oil Pipeline Corrosion Characteristics based on CFD[J].,2023,46(9):53-58.[doi:10.19291/j.cnki.1001-3938.2023.09.009]
点击复制

基于CFD的输油管道腐蚀特性分析()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
46
期数:
2023年第9期
页码:
53-58
栏目:
应用与开发
出版日期:
2023-09-19

文章信息/Info

Title:
Analysis of Oil Pipeline Corrosion Characteristics based on CFD
文章编号:
10.19291/j.cnki.1001-3938.2023.09.009
作者:
李明蔡亮李杉李小刚张世强梁昌晶
1. 中国石油华北油田分公司第五采油厂,河北 辛集 052360; 2. 中航油京津冀物流有限公司,天津 300300; 3. 中国石油渤海装备巨龙钢管公司,河北 青县 062650; 4. 中国石油渤海钻探工程有限公司井下作业分公司,河北 任丘 062552
Author(s):
LI Ming CAI Liang LI Shan LI Xiaogang ZHANG Shiqiang LIANG Changjing
1. CNPC No.5 Oil Production Plant of Huabei Oilfield Company, Xinji 052360, Hebei, China; 2. CNAF Beijing-Tianjin-Hebei Logistics Trarsportion Co., Ltd.,Tianjin 300300,China; 3. CNPC Bohai Equipment Julong Steel Pipe Co., Ltd., Qingxian 062658, Hebei, China; 4. CNPC Downhole Services Company of Bohai Drilling Engineering Co., Ltd., Renqiu 062552, Hebei, China
关键词:
输油管道腐蚀含水率计算流体力学临界流速
Keywords:
oil pipeline corrosion moisture content computational fluid dynamics critical flow rate
分类号:
TG179
DOI:
10.19291/j.cnki.1001-3938.2023.09.009
文献标志码:
A
摘要:
针对目前输油管道内腐蚀严重的现象,通过计算流体力学(CFD)方法,基于VOF欧拉模型和k-w湍流模型,对油水两相体系下不同含水率、不同流速的管道积液情况进行了分析,并考察了原油密度、压力、温度等因素对临界流速的影响,确定了输油管道发生腐蚀的先决条件。结果表明,对于低含水原油,流速越大,原油对水的离散作用越强,腐蚀危险性越弱;对于高含水原油,无论流速大小,管壁处均会形成连续水膜,腐蚀危险性增大;流速增加会减小管底积液厚度,当管底几乎无连续含水率离散点时可确定临界流速;原油密度越大,压力越低,临界流速就越小,而温度与临界流速无关联。研究结果可为输油管道的安全运行及维护提供参考。
Abstract:
Aiming at the phenomenon of severe corrosion in oil pipeline, through computational fluid dynamics (CFD) method, based on the VOF Euler model and k-w turbulence model, the oil water two phase system under different moisture content and flow velocity of fluid from the pipeline was analyzed, and the influence of the density of crude oil, pressure, temperature and other factors on the critical flow rate were investigated, and the prerequisite for corrosion to occur in the pipeline was determined. The results show that for low water cut crude oil, the higher the flow rate, the stronger the dispersion effect of crude oil on water, and the weaker the corrosion risk; for high water cut crude oil, no matter the flow rate, continuous water film will be formed at the pipe wall, and the corrosion risk is greater. With the increase of flow rate, the thickness of fluid at the bottom of the pipe is reduced. The critical flow rate can be determined when few scatter points can be found at the bottom of the pipe. The higher density of crude oil and the lower the pressure, the lower the critical flow rate, but there is no correlation between temperature and critical flow rate. The results can provide practical reference for the safe operation of oil pipelines.

参考文献/References:

[1] 万里平,孟英峰,梁发书.油气田开发中的二氧化碳腐蚀及影响因素[J].全面腐蚀控制,2003,1(2):14-17.[2] 张少峰.多相流防除垢技术的研究进展[J].盐科学与化工,2001,30(5):15-20.[3] 李建平,赵国先,郝士明,等.腐蚀监测技术在油气田的应用[J].盐科学与化工,2019,48(9):7-11.[4] 刘伟强,徐云泽,蔡伊扬,等.基于双环电阻传感器的X65管道流动加速腐蚀监测[J].腐蚀与防护,2022,43(3):23-28.[5] 樊学华,柳伟,祝亚茹,等.高温高压条件下流速对X70钢CO2冲刷腐蚀行为的影响[J].表面技术,2020,49(12):296-304.[6] 樊文娟,曹钜昊,姬忠文,等.含水原油对弯管腐蚀性影响与防护研究[J].管道技术与设备,2019(2):49-52,59.[7] 张洋洋,刘志慧,耿光伟,等.多相流流动对管道腐蚀状况研究[J].盐科学与化工,2021,50(12):5-10.[8] 程振玉,王丹,谢飞,等.油水两相流体系下的CO2腐蚀行为研究[J].辽宁石油化工大学学报,2022,42(1):41-46.[9] 娄晨,彭清华,林棋.水平管油-水两相管流的流型判别及压降预测[J].油气田环境保护,2014,24(2):12-15.[10] 叶帆,葛鹏莉,许艳艳,等.H2S/CO2环境中pH值对腐蚀产物膜以及腐蚀速率的影响[J].材料保护,2020,53(7):55-60.[11] GAO M,PANG X,GAO K.The growth mechanism of CO2 corrosion product films[J].Corrosion Science,2011,53(2):557-568.

相似文献/References:

[1]张振永,郭 彬.腐蚀管道剩余强度的确定及改造措施[J].焊管,2007,30(4):75.[doi:1001-3938(2007)04-0075-04]
 ZHANG Zhen-yong,GUO Bin.Determination of Residual Strength for Corrosion Pipeline and Rebuild Measures[J].,2007,30(9):75.[doi:1001-3938(2007)04-0075-04]
[2]尹国耀,魏振宏.杂散电流腐蚀与防护[J].焊管,2008,31(4):74.[doi:1001-3938(2008)04-0074-03]
 YIN Guo-yao,WEI Zhen-hong.Stray Current Corrosion and Prevention[J].,2008,31(9):74.[doi:1001-3938(2008)04-0074-03]
[3]方 炯,孙华峰,孙 丽,等.管道内外防腐材料探讨[J].焊管,2009,32(1):33.[doi:1001-3938(2009)01-0033-04]
 FANG Jiong,SUN Hua-feng,SUN Li,et al.Discussion on Inside and Outside Anticorrosion Materials of Pipelines[J].,2009,32(9):33.[doi:1001-3938(2009)01-0033-04]
[4]孙 丽,徐庆磊,方 炯,等.CO2腐蚀与防护研究[J].焊管,2009,32(3):23.[doi:1001-3938(2009)03-0023-04]
 SUN Li,XU Qing-lei,FANG Jiong,et al.Research of the CO2 Corrosion and Its Prevention[J].,2009,32(9):23.[doi:1001-3938(2009)03-0023-04]
[5]王媛,王俭秋,韩恩厚,等.输油管道的安全评价和缺陷分析[J].焊管,2011,34(1):57.[doi:1001-3938(2011)01-0057-05]
 Safety Assessment and Defect Analysis of Oil Piping[J].,2011,34(9):57.[doi:1001-3938(2011)01-0057-05]
[6]肖国章,高 霞,管磊磊,等.某油井套管腐蚀原因分析[J].焊管,2011,34(8):43.
[7]李霄,石凯,刘彦明,等.连续管焊接工艺及接头性能研究[J].焊管,2012,35(5):15.[doi:1001-3938(2012)05-0015-04]
 LI Xiao,SHI Kai,LIU Yan-ming,et al.Research on Coiled Tubing Butt Welding Process and Properties of Welded Joint[J].,2012,35(9):15.[doi:1001-3938(2012)05-0015-04]
[8]董 瑾.管线钢耐酸性腐蚀的主要影响因素及测试方法[J].焊管,2013,36(11):31.[doi:1001-3938(2013)11-0031-04]
 DONG Jin.Main Influence Factors to Sour Corrosion Resistance of Pipeline Steel and Test Method[J].,2013,36(9):31.[doi:1001-3938(2013)11-0031-04]
[9]宋立新,李美艳,王永兴.一种双相不锈钢焊接接头的组织及腐蚀性能[J].焊管,2014,37(4):26.[doi:1001-3938(2014)04-0026-04]
 SONG Lixin,LI Meiyan,WANG Yongxing.Microstructure and Corrosion Property of Welding Joint of A Duplex Phase Stainless Steel[J].,2014,37(9):26.[doi:1001-3938(2014)04-0026-04]
[10]李雅可,卢胜勇,马立立,等.近中性pH值溶液中X100管线钢应力和氢元素对电化学腐蚀行为的影响[J].焊管,2014,37(4):68.[doi:1001-3938(2014)04-0068-05]
 Edited and Translated by LI Yake,LU Shengyong,MA Lili,et al.Synergistic Effects of Hydrogen and Stress on Corrosion of X100 Pipeline Steel in A Near-neutral pH Solution[J].,2014,37(9):68.[doi:1001-3938(2014)04-0068-05]

备注/Memo

备注/Memo:
收稿日期:2022-08-02作者简介:李明(1974—),男,河北省辛集市人,大学本科,高级技师,现主要从事油气开采技术工作。
更新日期/Last Update: 2023-09-26