[1]孙 达,钱沙,高 崇,等.铝锂合金显微组织特征及其对力学性能的影响[J].焊管,2021,44(10):13-18,23.[doi:10.19291/j.cnki.1001-3938.2021.10.003]
 SUN Da,QIAN Shasha,GAO Chong,et al.Microstructural Characteristics of Al-Li Alloys and Effect on Mechanical Properties[J].,2021,44(10):13-18,23.[doi:10.19291/j.cnki.1001-3938.2021.10.003]
点击复制

铝锂合金显微组织特征及其对力学性能的影响()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
第44卷
期数:
2021年第10期
页码:
13-18,23
栏目:
试验与研究
出版日期:
2021-10-28

文章信息/Info

Title:
Microstructural Characteristics of Al-Li Alloys and Effect on Mechanical Properties
文章编号:
10.19291/j.cnki.1001-3938.2021.10.003
作者:
孙 达钱沙高 崇朱志单梦蝶蔡养
1. 天津理工大学 材料科学与工程学院,天津300384;2. 中铝材料应用研究院有限公司,北京 102200;3. 航天工程装备(苏州)有限公司,江苏 苏州 201100
Author(s):
SUN Da QIAN Shasha GAO Chong ZHU Zhixiong SHAN Mengdie CAI Yangchuan
1. School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China;2. Chinalco Materials Application Research Institute Co., Ltd., Beijing 102200, China;3. Aerospace Engineering Equipment (Suzhou) Co., Ltd., Suzhou 201100, Jiangsu, China
关键词:
铝锂合金力学性能析出物显微组织轧制
Keywords:
Al-Li alloy mechanical property precipitate microstrusture rolling
分类号:
TG146
DOI:
10.19291/j.cnki.1001-3938.2021.10.003
文献标志码:
A
摘要:
为了明确第三代铝锂合金的显微组织与力学性能之间的关系,利用光学显微镜和透射电子显微镜对三种新开发的铝锂合金(2A97-T8、2198-T8和2060-T8)的显微组织进行了定量评价,并用拉伸和硬度试验研究了其对力学性能的影响。结果表明,2060-T8、2A97-T8和2198-T8铝锂合金的显微组织是典型的轧制组织;铝锂合金的主要析出物为T1(Al2CuLi)、δ′(Al3Li)、S′(Al2CuMg)和 θ′(Al2Cu),铝锂合金析出相体积分数的增加可显著提高其显微硬度和抗拉强度,铝锂合金中析出相的数量和种类可以显著影响面内各项异性;2A97-T8和2198-T8合金的断裂模式为韧脆混合断裂,而2060-T8合金为韧性断裂。
Abstract:
In order to clarify the relationship between microstructure and mechanical properties of the third generation Al-Li alloy, quantitative evaluations of three recently developed Al-Li alloys (2A97-T8, 2198-T8 and 2060-T8) microstructure were carried out by using OM (optical microscope) and TEM (transmission electron microscopy). The influences on mechanical properties were studied by using tensile and hardness testing machine. Results show that the microstructures of 2060-T8, 2A97-T8 and 2198-T8 Al-Li alloy were typical rolling microstructures. The main precipitates of Al-Li alloys were T1 (Al2CuLi), δ′(Al3Li), S′(Al2CuMg) and θ′(Al2Cu). The increased volume fraction of Al-Li alloys precipitates can significantly raise its micro-hardness and tensile strength. The IPA (in-plane anisotropy) can be significantly affected by the amounts and types of precipitates in Al-Li alloys. Fracture modes were ductile-brittle mixed fractures for 2A97-T8 and 2198-T8 alloys; while ductile fracture for 2060-T8 alloy.

参考文献/References:

[1] DURSUN T,SOUTIS C. Recent developments in advanced aircraft aluminium alloys[J]. Materials and Design, 2014(56):862-871.[2] 李劲风,郑子樵,陈永来,等. 铝锂合金及其在航天工业上的应用[J]. 宇航材料工艺,2012,42(1):13-19.[3] AHMED B,WU S J. Aluminum lithium alloys (Al-Li-Cu-X)-new generation material for aerospace applications[J]. Applied Mechanics and Materials,2013(440):104-111.[4] MENG F L,CHAI Z G,LI J X,et al. Small-angle X-ray scattering study of the δ′ phase growth kinetic in 1420 Al-Li alloy[J]. Materials Characterization,2001,47(1):43-46.[5] SHEN Y Z,OH K H,LEE D N. Serrated flow behavior in 2090 Al-Li alloy influenced by texture and microstructure[J]. Materials Science and Engineering A,2006,435(11):343-354.[6] GABER A,AFIFY N. Characterization of the precipitates in Al-Li(8090) alloy using thermal measurements and TEM examinations[J]. Physica B:condensed matter,2002,315(1-3):1-6.[7] DORIN T,DESCHAMPS A,GEUSER F D,et al. Impact of grain microstructure on the heterogeneity of precipitation strengthening in an Al-Li-Cu alloy[J]. Materials Science and Engineering A,2015,627(11):51-55.[8] TSIVOULAS D,PRANGNELL P B. The effect of Mn and Zr dispersoid-forming additions on recrystallization resistance in Al-Cu-Li AA2198 sheet[J]. Acta Materialia,2014(4):1-16. [9] ZHONG J,ZHONG S,ZHENG Z Q,et al. Fatigue crack initiation and early propagation behavior of 2A97 Al-Li alloy [J]. Transactions of Nonferrous Metals Society of China,2014,24(2):303-309.[10] DECRCUS B,DESCHAMPS A,GEUSER D F,et al. The influence of Cu/Li ratio on precipitation in Al-Cu-Li-x alloys science direct[J]. Acta Materialia, 2013(6):2207-2218.[11] CAI B,ZHENG Z Q,HE D Q,et al. Friction stir weld of 2060 Al-Cu-Li alloy: microstructure and mechanical properties[J]. Journal of Alloys and Compounds,2015(649):19-27.[12] KIM H J,NIINOMI M. The role of microstructures on the strengthening mechanisms of a thermomechanically processed 2091 Al-Li alloy[J]. Materials Science and Engineering A,2000,284(1-2):14-24.[13] DONNADIEU P,SHAO Y,GEUSER F D,et al. Atomic structure of T1 precipitates in Al-Li-Cu alloys revisited with HAADF-STEM imaging and small-angle X-ray scattering[J]. Acta Materialia,2010,59(2):462-472.

相似文献/References:

[1]毕宗岳,付宏强 编译.高强度连续管[J].焊管,2007,30(6):85.[doi:1001-3938(2007)06-0085-05]
 Edited and Translated by BI Zong-yue,FU Hong-qiang.High Strength Coiled Tubing[J].,2007,30(10):85.[doi:1001-3938(2007)06-0085-05]
[2]闵祥玲,万金涛,王丽波 编译.X80级钢管适宜目前亚洲市场的原因分析[J].焊管,2007,30(6):90.[doi:1001-3938(2007)06-0090-03]
 Edited and Translated by MIN Xiang-ling,WAN Jin-tao,WANG Li-bo.Why X80 Pipe is Right for Asia Now[J].,2007,30(10):90.[doi:1001-3938(2007)06-0090-03]
[3]陶 鹏,张 弛,杨志刚,等.高钢级管线钢的组织和力学性能[J].焊管,2008,31(2):19.[doi:1001-3938(2008)02-0019-04]
 TAO Peng,ZHANG Chi,YANG Zhi-gang,et al.The Microstructure and Mechanical Property of X70,X80 and X100 Grade Pipeline Steel[J].,2008,31(10):19.[doi:1001-3938(2008)02-0019-04]
[4]王育田,张彦睿,薛文广,等.太钢X70级管线钢研制[J].焊管,2008,31(4):48.[doi:1001-3938(2008)04-0048-03]
 WANG Yu-tian,ZHANG Yan-rui,XUE Wen-guang,et al.Brief Introduction on Research & Development of TISCO X70 Pipeline Steel[J].,2008,31(10):48.[doi:1001-3938(2008)04-0048-03]
[5]孔君华,郑 琳,关 云,等.西气东输二线工程用18.4 mm厚 X80级热轧板卷生产实践[J].焊管,2008,31(6):50.[doi:1001-3938(2008)06-0050-04]
 KONG Jun-hua,ZHENG Ling,GUAN Yun,et al.Production Experience of X80 Grade Hot Rolled Coil with 18.4 mm Thickness Used〖JZ〗for the Second West to East Gas Pipeline Project[J].,2008,31(10):50.[doi:1001-3938(2008)06-0050-04]
[6]陆卫平.两种辊弯成型的方矩形管焊缝部位的检测分析[J].焊管,2009,32(4):21.[doi:1001-3938(2009)04-0021-04]
 LU Wei-ping.Inspection Analysis on Two Kind of Roll Forming Rectangular Pipe Weld[J].,2009,32(10):21.[doi:1001-3938(2009)04-0021-04]
[7]卢雪峰,石凯,周建宏,等.焊缝碾压形变热处理及其在连续管中的应用[J].焊管,2009,32(4):35.[doi:1001-3938(2009)04-0035-03]
 LU Xue-feng,SHI Kai,ZHOU Jian-hong,et al.Weld Thermomechanical Treatment with Roller Compaction and It’s Application in Coiled Tubing Manufacture[J].,2009,32(10):35.[doi:1001-3938(2009)04-0035-03]
[8]郭艳玲,贺英群,高真凤 编译.俄罗斯维克松钢管厂北欧天然气管道工程用φ1420mm LSAW焊管的开发[J].焊管,2009,32(6):64.[doi:1001-3938(2009)06-0064-04]
 Edited and Translated by GUO Yan-ling,HE Ying-qun,GAO Zhen-feng.Development of φ1 420 mm LSAW pipe in Vyksa Steel Works for the North-European gas pioeline[J].,2009,32(10):64.[doi:1001-3938(2009)06-0064-04]
[9]王伟,朱林,胡平,等.针状铁素体管线钢的组织结构及其与力学性能的关系研究[J].焊管,2009,32(11):21.[doi:1001-3938(2009)11-0021-08]
 WANG Wei,ZHU Lin,HU Ping,et al.Study on Microstructures and the Relation Between Microstructures and Mechanical Properties of Acicular Ferrite Pipeline Steel[J].,2009,32(10):21.[doi:1001-3938(2009)11-0021-08]
[10]李立科,郑茂盛,孙利军,等.热处理对X80管线钢组织性能的影响[J].焊管,2010,33(4):18.[doi:1001-3938(2010)04-0018-04]
 LI Li-ke,ZHENG Mao-sheng,SUN Li-jun,et al.The Influence of Heat Treatment on Microstructure Properties of X80 Pipeline Steel[J].,2010,33(10):18.[doi:1001-3938(2010)04-0018-04]

备注/Memo

备注/Memo:
收稿日期:2021-04-30作者简介:孙 达(1997—),男,硕士研究生,天津理工大学材料与工程学院,从事高熵合金研究。
更新日期/Last Update: 2021-10-28