[1]王 佳,陈 锴,赵 伟,等.X80管线钢焊接热影响区组织和氢渗透行为研究[J].焊管,2022,45(3):1-6.[doi:10.19291/j.cnki.1001-3938.2022.03.001]
 WANG Jia,CHEN Kai,ZHAO Wei,et al.Study on Microstructure and Hydrogen Permeation Behavior of Welding Heat Affected Zone of X80 Pipeline Steel[J].,2022,45(3):1-6.[doi:10.19291/j.cnki.1001-3938.2022.03.001]
点击复制

X80管线钢焊接热影响区组织和氢渗透行为研究()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
45
期数:
2022年第3期
页码:
1-6
栏目:
试验与研究
出版日期:
2022-03-28

文章信息/Info

Title:
Study on Microstructure and Hydrogen Permeation Behavior of Welding Heat Affected Zone of X80 Pipeline Steel
文章编号:
10.19291/j.cnki.1001-3938.2022.03.001
作者:
王 佳陈 锴赵 伟黄 鹏张 辉
1. 齐鲁工业大学(山东省科学院) 机械与汽车工程学院, 济南250353;2. 山东省机械设计研究院, 济南250031
Author(s):
WANG Jia CHEN Kai1 ZHAO Wei HUANG Peng ZHANG Hui
1. School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; 2. Shandong Institute of Mechanical Design and Research, Jinan 250031, China
关键词:
X80管线钢热影响区微观组织氢渗透硬度
Keywords:
X80 pipeline steel heat affected zone microstructure hydrogen permeation hardness
分类号:
TG142.1
DOI:
10.19291/j.cnki.1001-3938.2022.03.001
文献标志码:
A
摘要:
为了进一步研究X80管线钢热影响区组织对氢渗透行为的影响,利用焊接热模拟技术模拟了X80管线钢在不同峰值温度下生成的焊接热影响区,研究了800~1 350 ℃的峰值温度对焊接热影响区的组织、显微硬度和氢渗透行为的影响。焊接热影响区组织分析结果显示,当峰值温度为800 ℃时,组织主要为铁素体和贝氏体,晶粒大小分布不均匀,M-A组元呈岛状;峰值温度为900 ℃时,组织主要为细小的铁素体和粒状贝氏体,晶粒分布均匀,M-A组元呈岛状和粒状;峰值温度为1 150~1 350 ℃时,组织均以粒状贝氏体为主,M-A组元主要分布在原奥氏体晶界处。焊接热影响区硬度试验和氢渗透试验结果显示,显微硬度随着峰值温度的升高,呈先升高后降低趋势,并且发生了明显的软化;随着峰值温度的升高,组织的氢扩散通量和氢表现扩散系数逐渐增大,吸附氢浓度逐渐减小。研究表明,在焊接热影响区组织中,部分相变区的氢脆敏感性最高,容易造成氢聚集,进而引起氢脆等现象。
Abstract:
In order to further study the effect of microstructure of heat affected zone of X80 pipeline steel on hydrogen permeation behavior, the welding heat affected zone of X80 pipeline steel at different peak temperatures was simulated by welding thermal simulation technology. The effects of peak temperature of 800~1 350 ℃ on microstructure, microhardness and hydrogen permeation behavior of welding heat affected zone were studied. The results of microstructure analysis of HAZ show that when the peak temperature is 800 ℃, the microstructure is mainly ferrite and bainite, the grain size distribution is uneven, and the M-A component is island shaped. When the peak temperature is 900 ℃, the microstructure is mainly fine ferrite and granular bainite, the grain distribution is uniform, and the M-A component is island shaped and granular. When the peak temperature is 1 150~1 350 ℃, the microstructure is mainly granular bainite, and the M-A components are mainly distributed at the grain boundary of the original austenite. The results of hardness test and hydrogen permeation test of welding heat affected zone show that the microhardness decreases after increasing with the increase of peak temperature, and obvious softening occurs. With the increase of peak temperature, the hydrogen diffusion flux and hydrogen apparent diffusion coefficient of the tissue gradually increased, and the adsorbed hydrogen concentration gradually decreased. The results show that in the microstructure of welding heat affected zone, some phase transformation zones have the highest sensitivity to hydrogen embrittlement, which is easy to cause hydrogen accumulation and hydrogen embrittlement.

参考文献/References:

[1] 张其莘,赵静. 油气管道运输发展现状及问题分析[J]. 石化技术,2016,23(10):2.[2] 李鹤林. 天然气输送钢管研究与应用中的几个热点问题[J]. 中国机械工程,2001(3):117-120.[3] 谭亮. 油气管道及储运设施安全保障技术发展现状及展望[J]. 工程与装备,2021(7):198-199.[4] 曹睿,丁云,赵小康,等. 管线钢焊接接头腐蚀与防护的研究进展[J]. 腐蚀科学与防护技术,2017,29(6):657-663.[5] 侯东波,古丽努尔·牙哈甫,张文彬,等. 油气输送管道的腐蚀与防护技术研究[J]. 石油和化工设备,2021,24(3):104-106.[6] 徐政一,张鹏远,孟国哲. 金属氢渗透研究综述[J]. 表面技术,2019,48(11):45-58.[7] WITEK M. Possibilities of using X80,X100,X120 high-strength steels for onshore gas transmission pipelines[J]. Journal of Natural Gas Science and Engineering,2015,27(11):374-384.[8] ZHU X,LI W,HSU T Y,et al. Improved resistance to hydrogen embrittlement in a high-strength steel by quenching-partitioning-tempering treatment[J]. Scripta Materialia, 2015,97(3):21-24.[9] SUN Y W,CHEN J Z,LIU J,et al. Effect of hydrogen on ductility of high strength quenched and tempered (QT) Cr-Ni-Mo steels[J]. Materials Science and Engineering:A,2015(11):89-97.[10] WU T Q,YAN M C,ZENG D C,et al. Hydrogen permeation of X80 steel with superficial stress in the presence of sulfate-reducing bacteria[J]. Corrosion Science,2015,91(2):86-94.[11] SVOBODA J,MORI G,PRETHALER A,et al. Determi-nation of trapping parameters and the chemical diffusion coefficient from hydrogen permeation experiments[J]. Corrosion Science,2014,82(5):93-100.[12] 冯耀荣,吉玲康,李为卫,等. 中国X80管线钢和钢管研发应用进展及展望[J]. 油气储运,2020,39(6):612-622.[13] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 用电化学技术测量金属中氢渗透(吸收和迁移)的方法:GB/T 30074—2013[S]. 北京:中国标准出版社,2014.[14] 褚武扬,乔利杰,李金许,等. 氢脆和应力腐蚀—基础部分[M]. 北京:科学出版社,2013.[15] 郭望,赵卫民,张体明,等. 阴极极化和应力耦合作用下X80钢氢渗透行为研究[J]. 中国腐蚀与防护学报,2015,35(4):353-358.[16] 赵小宇,黄峰,甘丽君,等. MS X70酸性环境用管线钢焊接接头氢致开裂敏感性及氢捕获效率研究[J]. 金属学报,2017,53(12):1579-1587.[17]唐秀艳. 煤制气环境因素对X80管线钢氢渗透行为及氢脆敏感性的影响[D]. 青岛:中国石油大学(华东),2016.[18] 孙永伟,陈继志,刘军. 1 000 MPa级0Cr16Ni5Mo钢的氢脆敏感性研究[J]. 金属学报,2015,51(11):1315-1324.[19] ZHAO W M,ZHANG T M,ZHAO Y J,et al. Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment[J]. Corrosion Science:The Journal on Environmental Degradation of Materials and its Control,2016,111(10):84-97.

相似文献/References:

[1]许良红,陈延清,牛 辉.焊接热循环对高Nb X70级管线钢热影响区组织和韧性的影响[J].焊管,2009,32(5):18.[doi:1001-3938(2009)05-0018-04]
 XU Liang-hong,CHEN Yan-qing,NIU Hui.Effect on HAZ Structure and Toughness of Welding Thermal Cycle for High Nb X70 Grade Pipeline Steel[J].,2009,32(3):18.[doi:1001-3938(2009)05-0018-04]
[2]张涵,葛玉宏.多丝埋弧焊热影响区冲击韧性分析[J].焊管,2009,32(11):46.[doi:1001-3938(2009)11-0046-05]
 ZHANG Han,GE Yu-hong.Aanlysis on Heat Affected Zone Impact Toughness of Multi-wire Submerged Arc Welding[J].,2009,32(3):46.[doi:1001-3938(2009)11-0046-05]
[3]王绪华,张劲楠.X80级管线钢冲击韧性及其有效晶粒研究[J].焊管,2009,32(12):20.[doi:1001-3938(2009)12-0020-03]
 WANG Xu-hua,ZHANG Jin-nan.Research on Impact Toughness and Effective Grain of X80 Grade Pipeline Steel[J].,2009,32(3):20.[doi:1001-3938(2009)12-0020-03]
[4]孙宏.西气东输二线用国产X80钢级螺旋埋弧焊管性能分析[J].焊管,2010,33(2):13.[doi:1001-3938(2010)02-0013-04]
 SUN Hong.Analysis on Domestic X80 Grade SAWH Pipe Property Used in the[J].,2010,33(3):13.[doi:1001-3938(2010)02-0013-04]
[5]甘正红,任文浩.双面埋弧焊钢管焊缝热影响区超声检测回波信号探讨[J].焊管,2010,33(2):45.[doi:1001-3938(2010)02-0045-05]
 GAN Zheng-hong,REN Wen-hao.Study on Echo Wave Signal of Ultrasonic Test at Weld HAZ of Double SAW Pipe[J].,2010,33(3):45.[doi:1001-3938(2010)02-0045-05]
[6]李立科,郑茂盛,孙利军,等.热处理对X80管线钢组织性能的影响[J].焊管,2010,33(4):18.[doi:1001-3938(2010)04-0018-04]
 LI Li-ke,ZHENG Mao-sheng,SUN Li-jun,et al.The Influence of Heat Treatment on Microstructure Properties of X80 Pipeline Steel[J].,2010,33(3):18.[doi:1001-3938(2010)04-0018-04]
[7]王娜,雷阿利.X80管线钢焊接接头中焊缝的耐蚀性的研究[J].焊管,2010,33(5):24.[doi:1001-3938(2010)05-0024-06]
 WANG Na,LEI A-li.Research on the Corrosion Restistance of X80 Pipeline Steel Welding Joints in Sulfer-containing Medium[J].,2010,33(3):24.[doi:1001-3938(2010)05-0024-06]
[8]李翠艳,边城 编译.Ti,N和C对X70管线钢管焊缝热影响区韧性的影响[J].焊管,2010,33(6):60.[doi:1001-3938(2010)06-0060-06]
 Edited and Translated by LI Cui-yan,BIAN Cheng.Influence of Ti,N and C on Weld HAZ Toughness of X70 Pipeline Steel[J].,2010,33(3):60.[doi:1001-3938(2010)06-0060-06]
[9]张敏,赵鹏康,毕宗岳,等.X80管线钢用气体保护焊丝的研制[J].焊管,2010,33(10):23.[doi:1001-3938(2010)10-0023-06]
 ZHANG Min,ZHAO Peng-kang,BI Zong-yue,et al.Development of Gas-shielded Welding Wire for X80 Pipeline Steel[J].,2010,33(3):23.[doi:1001-3938(2010)10-0023-06]
[10]李根全,肖凡,李志忠,等.螺旋埋弧焊管焊缝韧性[J].焊管,2010,33(8):24.[doi:1001-3938(2010)08-0024-04]
 LI Gen-quan,XIAO Fan,LI Zhi-zhong,et al.Weld Toughness of SAWH Pipes[J].,2010,33(3):24.[doi:1001-3938(2010)08-0024-04]
[11]谢志远,乔桂英,等.X80大应变管线钢焊接热影响区疲劳性能的研究[J].焊管,2017,40(5):19.[doi:10.19291/j.cnki.1001-3938.2017.05.004]
 XIE Zhiyuan,QIAO Guiying,ZHAO Zuopeng,et al.Research on Fatigue Performance of X80 Large Strain Pipeline Steel Heat Affected Zone[J].,2017,40(3):19.[doi:10.19291/j.cnki.1001-3938.2017.05.004]

备注/Memo

备注/Memo:
收稿日期:2021-11-21基金项目: 国家自然科学基金青年科学基金项目“X80管线钢焊接接头非均匀梯度特征对H2S腐蚀的影响机理研究”(项目编号51805285)。作者简介:王 佳(1997—),男,硕士研究生,研究方向为材料连接技术与工艺。
更新日期/Last Update: 2022-04-02