[1]豆旭昭,王世清,宋晓娟,等.基于ANSYS的Ti2AlNb钛合金电子束焊接数值模拟[J].焊管,2022,45(4):35-39.[doi:10.19291/j.cnki.1001-3938.2022.04.007]
 DOU Xuzhao,WANG Shiqing,SONG Xiaojuan,et al.Numerical Simulation of Electron Beam Welding Process of Ti2AlNb Titanium Alloy based on ANSYS[J].,2022,45(4):35-39.[doi:10.19291/j.cnki.1001-3938.2022.04.007]
点击复制

基于ANSYS的Ti2AlNb钛合金电子束焊接数值模拟()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
45
期数:
2022年第4期
页码:
35-39
栏目:
应用与开发
出版日期:
2022-04-28

文章信息/Info

Title:
Numerical Simulation of Electron Beam Welding Process of Ti2AlNb Titanium Alloy based on ANSYS
文章编号:
10.19291/j.cnki.1001-3938.2022.04.007
作者:
豆旭昭王世清宋晓娟刘五兵
1. 中国石油工程建设有限公司华北分公司,河北 任丘 062550;2. 西安石油大学 材料科学与工程学院,西安 710065
Author(s):
DOU Xuzhao WANG Shiqing SONG Xiaojuan LIU Wubing
1. North China Branch of Petro China Engineering Construction Co., Ltd., Renqiu 062550, Hebei, China;
2. School of Material Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
关键词:
Ti2AlNb钛合金ANSYS有限元分析电子束焊接温度场热循环性能
Keywords:
Ti2AlNb titanium alloy ANSYS finite element analysis electron beam welding temperature field thermal cycle performance
分类号:
TG456.9
DOI:
10.19291/j.cnki.1001-3938.2022.04.007
文献标志码:
A
摘要:
为了优化Ti2AlNb钛合金的电子束焊接工艺,利用ANSYS有限元分析软件对壁厚3.5 mm的Ti2AlNb钛合金电子束焊接过程进行数值模拟,运用双椭球热源进行加载,改变电子束流以及焊接速度,分析了电子束流和焊接速度对温度场分布、熔池形貌、熔深、熔宽以及热循环性能的影响,确定了最优的焊接工艺参数。模拟结果显示,焊接速度越小,熔深越大,熔宽也越大;电子束流值越大,熔深与熔宽均增大;电子束流值越大,峰值温度越大;焊接速度越快,峰值温度越小,且升温至峰值温度的时间越短。研究表明,加速电压60 kV,电子束流值为35 mA,聚焦电流380 mA,焊接速度600 mm/min为3.5 mm厚Ti2AlNb钛合金电子束最优焊接工艺参数。
Abstract:
In order to optimize the electron beam welding process of Ti2AlNb titanium alloy, the electron beam welding process of Ti2AlNb titanium alloy with wall thickness of 3.5 mm was numerically simulated by ANSYS finite element analysis software. Double ellipsoid heat source was used to load and change the electron beam current and welding speed. The effects of electron beam current and welding speed on temperature field distribution, weld pool morphology, penetration depth, width and thermal cycle performance were analyzed, and the optimal welding process parameters were determined. The results show that the smaller the welding speed is, the greater the penetration is and the wider the penetration is. The greater the electron beam current, the greater the penetration depth and width. The higher the electron beam current, the higher the peak temperature. The faster the welding speed, the smaller the peak temperature, and the shorter the time to rise to the peak temperature. The results show that the acceleration voltage is 60 kV, the electron beam current value is 35 mA, the focusing current is 380 mA, and the welding speed is 600 mm/min, which is the optimal electron beam welding process parameters of 3.5 mm wall thickness Ti2AlNb titanium alloy.

参考文献/References:

[1] 李晋永. 工程结构材料焊接接头疲劳性能的对比研究[D]. 太原:太原理工大学,2008.[2] 陈芙蓉,贾翠玲. 7A52铝合金焊接及其接头表面纳米化研究现状[J]. 华东交通大学学报,2019,36(1)1-11.[3] 江畅. Ti40/TC4异种钛合金电子束焊接工艺及组织性能研究[D]. 南昌:南昌航空大学,2017.[4] MORAIS L S,SERRA G G,MULLER C A,et al. Titanium alloy mini-implants for orthodontic anchorage: immediate loading and metal ion release[J]. Acta Biomaterialia,2007,3(3): 331-339.[5] 李行志. 钛合金电子束焊接接头显微组织及疲劳性能研究[D]. 武汉:华中科技大学,2012.[6] WANG G Q,ZHAO Z B,YU B B,et al. Effect of base material on microstructure and texture evolution of a Ti-6Al-4V electron-beam welded joint[J]. Acta Metallurgica Sinica (English Letters),2017,30(5): 499-504.[7] 陈国庆,树西,柳峻鹏,等. 真空电子束焊接技术应用研究现状[J]. 精密成形工程,2018,52(1):31-39.[8] 尹丽香. TC4钛合金电子束焊接接头组织形态与性能的研究[D]. 大连:大连交通大学,2006.[9] 赵海生. QCr0.8/TC4异种材料电子束焊接工艺研究[D]. 哈尔滨:哈尔滨工业大学,2007.[10] 陈源. Ti2AlNb合金及其与TC4合金异种金属的电子束焊接技术研究[D]. 南京:南京航空航天大学,2019.[11] 刘思宇. 同心异径管的数值模拟及缺陷维护[J]. 管道技术与设备,2019,160(6):22-23,60.[12] 刘雪莲.激光超声表面波用于加工表面损伤检测的传播机理研究[D]. 天津:天津大学,2018.[13] 陈家权,肖顺湖,杨新彦,等. 焊接过程数值模拟热源模型的研究进展[J]. 装备制造技术,2005(3):10-14.[14] 袁尤智,汪岩峰,刘晓瑞. 基于FLUENT的TIG焊三维熔池热场与流场的数值模拟[J].江西科学,2008,26(6):880-883.[15] 董智军. Ti2AlNb基合金激光焊接特性研究[D]. 哈尔滨:哈尔滨工业大学,2012.

备注/Memo

备注/Memo:
收稿日期:2021-10-19
作者简介:豆旭昭(1998—),男,陕西省咸阳人,本科,现从事管道设计研究工作。
更新日期/Last Update: 2022-04-27