[1]陈兵,徐梦林,齐文娇.基于CCUS 的CO2管道延性断裂机理及止裂控制研究进展[J].焊管,2022,45(9):1-10.[doi:10.19291/j.cnki.1001-3938.2022.09.001]
 CHEN Bing,XU Menglin,Qi Wenjiao.Research Progress on Ductile Fracture Mechanism and Crack Arrest Control of CO2 Pipeline Based on CCUS[J].,2022,45(9):1-10.[doi:10.19291/j.cnki.1001-3938.2022.09.001]
点击复制

基于CCUS 的CO2管道延性断裂机理及止裂控制研究进展()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
45
期数:
2022年第9期
页码:
1-10
栏目:
综述
出版日期:
2022-09-28

文章信息/Info

Title:
Research Progress on Ductile Fracture Mechanism and Crack Arrest Control of CO2 Pipeline Based on CCUS
文章编号:
10.19291/j.cnki.1001-3938.2022.09.001
作者:
陈兵徐梦林齐文娇
西安石油大学机械工程学院,西安710065
Author(s):
CHEN Bing XU Menglin Qi Wenjiao
School of mechanical engineering,Xian Shiyou University,Xi’an 710065,China
关键词:
CO2管道延性断裂断裂扩展止裂控制
Keywords:
CO2 pipeline ductile fracture fracture propagation crack arrest control
分类号:
TG111.91
DOI:
10.19291/j.cnki.1001-3938.2022.09.001
文献标志码:
A
摘要:
针对CO2输送管道运行过程中存在的延性断裂风险,从管道断裂机理和止裂控制两个方面综述了国内外研究进展,分析了不同相态、管材类型、杂质因素等初始条件对CO2管道断裂扩展规律的影响,总结分析了不同止裂控制方法的止裂原理和结构,以及不同类型止裂结构在试验和数值模拟中所体现的止裂效果。在综述基础上,归纳了当前CO2管道断裂机理及止裂控制研究方面需要深入研究的问题,并对相关研究内容进行了展望,包括裂纹裂尖处CO2热物性质与裂纹断裂扩展的耦合关系的研究、可靠的管道止裂准则的建立、适用于CO2管道的止裂结构的设计优化等,以期为CO2管道的合理设计、安全运行以及CCUS 技术的推广实施提供参考。
Abstract:
In view of the risk of ductile fracture in the transportation of CO2pipeline, the research progress at home and abroad was reviewed from the aspects of pipeline fracture mechanism and crack arrest control, the influence of initial conditions such as different phase states, pipe types and impurity factors on fracture propagation law of CO2pipeline was analyzed,and the principles and structures of different crack arrest control methods were summarized and analyzed, as well as the effect of different types of crack arrest structures in experiments and numerical simulation. On the basis of the review, the problems that need to be further studied in the current research on fracture mechanism and crack arrest control of CO2 pipeline are summarized, and the related research contents are prospected, including studying the coupling relationship between the properties of CO2 thermal material at the crack tip and crack propagation, establishing a reliable crack arrest criterion for pipeline, and designing and optimizing the crack arrest structure suitable for CO2 pipeline, so as to provide theoretical guidance for the rational design, safe operation of CO2 pipeline and the promotion and implementation of CCUS technology.

参考文献/References:

[1] XU S,DAI S. CCUS as a second-best choice for China’s carbon neutrality:an institutional analysis[J].Climate Policy,2021,21(7):927-938.[2] 梁锋. 碳中和目标下碳捕集、利用与封存(CCUS)技术的发展[J]. 能源化工,2021,42(5):19-26.[3] 于泽伟. 碳中和目标下的CCUS[J].能源,2020(12):89-90.[4] WANG Y,GUO C,CHEN X,et al. Carbon peak and carbon neutrality in China:Goals, implementation path and prospects[J]. China Geology,2021,4(4):720-746.[5] 生态环境部环境规划院. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)—中国CCUS 路径研究[EB/OL].[2021-07-25].(2022-06-24).https://www.3mbang.com/y-46707852.html.[6] 陈兵,肖红亮,李景明,等. 二氧化碳捕集、利用与封存研究进展[J]. 应用化工,2018,47(3):589-592.[7] TAPIA J F D,LEE J,OOI R E,et al. A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems[J].Sustainable Production and Consumption,2018(13):1-15.[8] 蒋秀,屈定荣,刘小辉. 超临界CO2管道输送与安全[J].油气储运,2013,32(8):809-813.[9] 喻西崇,李志军,潘鑫鑫,等. CO2超临界态输送技术研究[J]. 天然气工业,2009,29(12):83-86.[10] SIM S,COLE I S,CHOI Y,et al. A review of the protection strategies against internal corrosion for the safe transport of supercritical CO2 via steel pipelines for CCS purposes[J].International Journal of Greenhouse Gas Control,2014(29):185-199.[11] ZENG Y,LI K. Influence of SO2 on the corrosion and stress corrosion cracking susceptibility of supercritical CO2 transportation pipelines[J]. Corrosion Science,2020(165):108404.[12] 郑建坡,史建公,刘志坚,等. 二氧化碳管道输送技术研究进展[J]. 中外能源,2018,23(6):87-94.[13] COULES H E. Stress intensity interaction between dissimilar semi-elliptical surface cracks[J]. International Journal of Pressure Vessels and Piping,2016 (146):55-64.[14] LI Y,LIU X,WANG C,et al. Research progress on corrosion behavior of gaseous CO2 transportation pipelines containing impurities[J]. Acta Metall Sin, 2020,57(3):283-294.[15] 李玉星,刘兴豪,王财林,等. 含杂质气态CO2输送管道腐蚀研究进展[J]. 金属学报,2021,57(3):283-294.[16] MARTYNOV S B,TALEMI R H,BROWN S,et al. Assessment of fracture propagation in pipelines transporting impure CO2 streams[J]. Energy Procedia,2017(114):6685-6697.[17] COSHAM A,EIBER R J. Fracture control in carbon dioxide pipelines: the effect of impurities[C]//International Pipeline Conference. Calgary,Canada:IPC,2008.[18] CHACIN A,VáZQUEZ J M, MüLLER E A. Molecular simulation of the Joule-Thomson inversion curve of carbon dioxide[J]. Fluid Phase Equilibria,1999,165(2):147-155.[19] ASHARI R,ESLAMI A. Anisotropy in mechanical properties and corrosion of X52 pipeline steel at different pipe angles[J]. Protection of Metals and Physical Chemistry of Surfaces,2019,55(3):546-553.[20] 陈国龙,闫振汉,喻健良,等. 大规模埋地CO2管道泄漏过程中的温度场变化[J]. 安全与环境学报, 2020,20(3):870-877.[21] MOLAG M,DAM C. Modelling of accidental releases from a high pressure CO2 pipelines[J]. Energy Procedia,2011(4):2301-2307.[22] WANG C,LI Y,TENG L,et al. Experimental study on dispersion behavior during the leakage of high pressure CO2 pipelines[J]. Experimental Thermal and Fluid Science,2019(105):77-84.[23] Det Norske Veritas. DNV-RP-J202 design and operation of CO2 pipelines [R]. Veritasveien,Norway:[s.n.],2010.[24] Det Norske Veritas. DNV-RP-F104 design and operation of carbon dioxide pipelines[R].Veritasveien,Norway:[s.n.],2021.[25] HAN C,ZAHID U,AN J,et al. CO2 transport:design considerations and project outlook[J]. Current Opinion in Chemical Engineering,2015(10):42-48.[26] 陈磊,闫兴清,胡延伟,等. 二氧化碳管道意外泄漏减压过程的断裂控制研究进展[J]. 化工进展,2022,41(3):1241-1255.[27] 帅健,张宏,王永岗,等. 输气管道裂纹动态扩展及止裂技术研究进展[J]. 石油大学学报(自然科学版),2004(3):129-135.[28] ZHUANG Z,O’DONOGHUE P E. The recent development of analysis methodology for rapid crack propagation and arrest in gas pipelines[J]. International Journal of fracture,2000,101(3):269-290.[29] GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical transactions of the royal society of london,1921,221(582-593):163-198.[30] RUDINGER G,CHANG A. Analysis of nonsteady two-phase flow[J]. The Physics of Fluids,1964,7(11):1747-1754.[31] MAXEY W A. Long shear fractures in CO2 lines controlled by regulating saturation, arrest pressures[J]. Oil& Gas Journal,1986,84(31):558-583.[32] RUDLAND D,SHIM D J,XU H,et al. First major improvements to the two-curve ductile fracture model-part I main body[R]. Unitied States:PRCI,2007.[33] ZHU X. A modified two-curve model for running fracture arrest design of high-strength transmission pipelines[J].Journal of Pipeline Engineering,2016,15(4):453-469.[34] LEIS B N,FORTE T P. New approach to assess running fracture in transmission pipelines[R]. United State:PRCI,2007.[35] AHMAD M,LOWESMITH B,DE KOEIJER G,et al.COSHER joint industry project: large scale pipeline rupture tests to study CO2 release and dispersion[J]. International Journal of Greenhouse Gas Control,2015(37):340-353.[36] DAVIS B J,MICHAL G,LU C,et al. Separation characteristics of an X65 linepipe steel from laboratory-scale to full-scale fracture tests[C]//International Pipeline Conference. Calgary,Canada:IPC,2020.[37] DRESCHER M,VARHOLM K,MUNKEJORD S T,et al. Experiments and modelling of two-phase transient flow during pipeline depressurization of CO2 with various N2 compositions[J]. Energy Procedia,2014(63):2448-2457.[38] COSHAM A,EIBER R J,CLARK E B. GASDECOM:Carbon dioxide and other components[C]//International Pipeline Conference. Calgary,Canada:IPC,2010.[39] LINTON V,LEINUM B H,NEWTON R,et al. CO2 safe-arrest:a full-scale burst test research program for carbon dioxide pipelines—part1:project overview and outcomes of test 1[C]//International Pipeline Conference.Calgary,Canada:IPC,2018.[40] MICHAL G,DAVIS B,STBY E, et al. CO2 safe-arrest:a full-scale burst test research program for carbon dioxide pipelines—part2:is the BTCM out of touch with dense-phase CO2[C]//International Pipeline Conference.Calgary,Canada:IPC,2018.[41] MUNKEJORD S T,HAMMER M. Depressurization of CO2 rich mixtures in pipes:two-phase flow modelling and comparison with experiments[J]. International Journal of Greenhouse Gas Control,2015(37):398-411.[42] MUNKEJORD S T,AUSTEGARD A,DENG H,et al.Depressurization of CO2 in a pipe:high-resolution pressure and temperature data and comparison with model predictions[J]. Energy,2020(211):118560.[43] COSHAM A,JONES D G,ARMSTRONG K,et al. Ruptures in gas pipelines, liquid pipelines and dense phase carbon dioxide pipelines[C]//International Pipeline Conference. Calgary,Canada:IPC,2012.[44] TERENZI A. Expansion waves in two-phase pipelines[C]//International Pipeline Conference. Calgary,Canada:IPC,2006.[45] 郭晓璐,喻健良,闫兴清,等. 超临界CO2管道泄漏特性研究进展[J]. 化工学报,2020,71(12):5430-5442.[46] 任科. 超临界二氧化碳管道断裂理论和控制方法研究[D]. 西安:西安石油大学,2018.[47] PATEL S K,DATTAGURU B,RAMACHANDRA K.Multiple interacting and coalescing semi-elliptical surface cracks in fatigue-Part I: finite element analysis[J].Structural Longevity,2010,3(1-2):37-57.[48] 李哲. CO2管道表面裂纹扩展的管材试验及有限元分析[D]. 沈阳:沈阳建筑大学,2018.[49] OKODI A,LIN M,YOOSEF-GHODSI N,et al. Crack propagation and burst pressure of longitudinally cracked pipelines using extended finite element method[J]. International Journal of Pressure Vessels and Piping,2020(184):104115.[50] KEIM V,MARX P,NONN A,et al. Fluid-structure-interaction modeling of dynamic fracture propagation in pipelines transporting natural gases and CO2-mixtures[J].International Journal of Pressure Vessels and Piping,2019(175):103934.[51] KEIM V,PAREDES M,NONN A,et al. FSI-simulation of ductile fracture propagation and arrest in pipelines:Comparison with existing data of full-scale burst tests[J]. International Journal of Pressure Vessels and Piping,2020(182):104067.[52] HU Q,ZHANG N,LI Y,et al. A new model for calculation of arrest toughness in the fracture process of the supercritical CO2 pipeline[J]. ACS omega,2021,6(26):16804-16815.[53] MARTYNOV S B,TALEMI R H,BROWN S,et al. Assessment of fracture propagation in pipelines transporting impure CO2 streams[J]. Energy Procedia,2017(114):6685-6697.[54] PARK A,KO Y,RYU S,et al. Numerical modeling of rapid depressurization of a pressure vessel containing two-phase hydrocarbon mixture[J]. Process Safety and Environmental Protection,2018(113):343-356.[55] JIE H E,XU B P,WEN J X,et al. Predicting the decompression characteristics of carbon dioxide using computational fluid dynamics[C]//International Pipeline Conference. Calgary,Canada:IPC,2012.[56] ZHEN Y,ZU Y,CAO Y,et al. Effect of accurate prediction of real-time crack tip position on dynamic crack behaviors in gas pipeline[J]. Journal of Natural Gas Science and Engineering,2021(94):104136.[57] 潘家华. 长输管道试压断裂的分析探讨[J]. 石油工程建设,1992(5):4-7.[58] MAKINO H,KUBO T,SHIWAKU T,et al. Prediction for crack propagation and arrest of shear fracture in ultra-high pressure natural gas pipelines[J]. ISIJ international,2001,41(4):381-388.[59] CHAHARDEHI A. Structural integrity of CO2 transport pipelines—a review[J].Key Engineering Materials,2011,1382(488):779.[60] 徐源. 含杂质超临界CO2管道裂纹延性扩展研究[D].西安:西安石油大学, 2021.[61] MOHITPOUR M,SEEVAM P,BOTROS K K,et al.Pipeline transportation of carbon dioxide containing impurities[M]. United States:ASME,2012.[62] 张希悉,汪凤,范玉然. 高钢级天然气长输管道止裂控制技术现状[J]. 油气储运,2014,33(8):819-824.[63] 王佐强,刘极莉,刘楚,等. 海底输气管道延性断裂扩展机理及断裂控制[J]. 石化技术,2015,22(5):157-159.[64] 陈福来,帅健. 输气管道延性断裂的止裂结构及韧性确定方法[J]. 压力容器,2006(7):39-43.[65] FONZO A,MELEDDU A,DI BIAGIO M,et al. Crack propagation modeling and crack arrestor design for X120[C]//International Pipeline Conference. Calgary,Canada:IPC,2006.[66] 王宝昌.海底输气管道强度设计[J].石油规划设计,1997(4):32-33.[67] 李秀锋,张英,冯彪. 浅层气区域海底管道的损坏及修复[J]. 油气储运,2020,39(11):1310-1315.[68] KONG D,HUANG X,XIN M,et al. Effects of defect dimensions and putty properties on the burst performances of steel pipes wrapped with CFRP composites[J].International Journal of Pressure Vessels and Piping,2020(186):104139.[69] JODIN P. Fracture mechanics analysis of repairing a cracked pressure pipe with a composite sleeve [M]//Safety,Reliability and Risks Associated with Water,Oil and Gas Pipelines. [S.l.]:Springer,2008:325-333.[70] WILKOWSKI G,RUDLAND D,ROTHWELL B. How to optimize the design of mechanical crack arrestors[C]//International Pipeline Conference. Calgary,Canada:IPC,2006.[71] AURSAND E,AURSAND P,BERSTAD T,et al. CO2 pipeline integrity:A coupled fluid-structure model using a reference equation of state for CO2[J]. Energy Procedia,2013(37):3113-3122.[72] AURSAND P,HAMMER M,MUNKEJORD S T,et al.Pipeline transport of CO2 mixtures:Models for transient simulation[J]. International Journal of Greenhouse Gas Control,2013(15):174-185.[73] 喻健良,李宁,秦磊,等. 轴向穿透裂纹管道套管止裂性能分析[J]. 石油化工设备,2010,39(1):32-35.[74] 陈兵,唐凌虹,任科,等. 一种用于超临界CO2输送管道的止裂器:201720883781.2[P]. 2017-07-20.[75] O’DONOGHUE P E,KANNINEN M F,LEUNG C P,et al. The development and validation of a dynamic fracture propagation model for gas transmission pipelines[J]. International Journal of Pressure Vessels and Piping,1997,70(1):11-25.[76] WANG L,SONG S,DENG H,et al. Finite-element analysis of crack arrest properties of fiber reinforced composites application in semi-elliptical cracked pipelines[J]. Applied Composite Materials,2018,25(2):321-334.[77] JODIN P. Repairing of damaged pressure pipes with a composite sleeve [C]//Materials Science Forum. Metz,France:[s.n.],2006.[78] WILKOWSKI G M, OLSON R J, SCOTT P M. Stateof-the -art report on piping fracture mechanics [R].Washington: Division of Engineering Technology,1998.[79] BIAGIO M D,LUCCI A,MECOZZI E,et al. Fracture propagation prevention on CO2 pipelines:full scale experimental testing and verification approach[C]// Pipeline Technology Conference. Berlin:[s.n.],2017.[80] VAN DEN ABEELE F,AMLUNG L,DI BIAGIO M,et al. Towards a numerical design tool for composite crack arrestors on high pressure gas pipelines[C]//International Pipeline Conference. Calgary,Canada:IPC,2010.[81] MAZURKIEWICZ L,TOMASZEWSKI M,MALACHOWSKI J,et al. Experimental and numerical study of steel pipe with part-wall defect reinforced with fibre glass sleeve[J]. International Journal of Pressure Vessels and Piping,2017(149):108-119.[82] 张晓燕. 高钢级(X100)输气管道止裂技术研究与有限元模拟[D]. 成都:西南石油大学,2016.[83] JOZAVI H,DUPUIS C W,SANCAKTAR E. Investigation of fracture behavior of a composite crack arrestor[J].Journal of Composite Materials,1988,22(5):427-446.

相似文献/References:

[1]Satoshi IGI 伊木.中国西气东输二线管道延性断裂分析(一)[J].焊管,2008,31(2):23.[doi:1001-3938(2008)02-0023-04]
 Satoshi IGI.Analysis on Ductile Fracture of the Second West to East Gas Pipeline Project[J].,2008,31(9):23.[doi:1001-3938(2008)02-0023-04]
[2]村田正彦.日本新日铁X80级管线钢管研究概述[J].焊管,2008,31(2):40.[doi:1001-3938(2008)02-0040-04]
 Masahiko Murata.Pipe Study Summarization with Grade X80 Pipeline Steel by Nippon Co.Japan[J].,2008,31(9):40.[doi:1001-3938(2008)02-0040-04]
[3]Satoshi IGI 伊木.中国西气东输二线管道延性断裂分析(二)[J].焊管,2008,31(3):33.[doi:1001-3938(2008)03-0033-06]
 Satoshi IGI.Analysis on Ductile Fracture of the Second West to East Gas Pipeline Project[J].,2008,31(9):33.[doi:1001-3938(2008)03-0033-06]
[4]蔡彬,郑福恩,李记科,等.海底油气管道延性断裂止裂CVN冲击功的计算[J].焊管,2011,34(12):39.[doi:1001-3938(2011)12-0039-04]
 CAI Bin,LI Ji-ke,LI Yun-long.CVN Impact Values Calculation for the Arrest of Ductile Fracture for Subsea Oil and Gas Pipeline[J].,2011,34(9):39.[doi:1001-3938(2011)12-0039-04]
[5]陈小伟,王 旭,郭立萍,等.抗延性断裂X80厚壁直缝埋弧焊管的研发[J].焊管,2018,41(9):6.[doi:10.19291/j.cnki.1001-3938.2018.09.002]
 CHEN Xiaowei,WANG Xu,GUO Liping,et al.Development of X80 Thick-wall Straight Seam Submerged Arc Welded Pipe With Ductile Fracture[J].,2018,41(9):6.[doi:10.19291/j.cnki.1001-3938.2018.09.002]
[6]崔富凯,甄 莹.高钢级管道延性断裂过程中壁厚减薄率研究[J].焊管,2021,44(10):1.[doi:10.19291/j.cnki.1001-3938.2021.10.001]
 CUI Fukai,ZHEN Ying.Study on the Wall Thickness Reduction Rate during the Ductile Fracture of High-grade Pipeline[J].,2021,44(9):1.[doi:10.19291/j.cnki.1001-3938.2021.10.001]
[7]吴文,钟桂香,黄卫锋 编译.某X80钢级CO2输送管道断裂事故调查分析情况介绍[J].焊管,2023,46(12):64.[doi:10.19291/j.cnki.1001-3938.2023.12.011]
 Translated by WU Wen,ZHONG Guixiang,HUANG Weifeng.Incident Investigation and Analysis of a X80 CO2 Transportation Pipeline Rupture[J].,2023,46(9):64.[doi:10.19291/j.cnki.1001-3938.2023.12.011]

备注/Memo

备注/Memo:
收稿日期:2022-06-15基金项目:国家重大工程延长石油碳捕集和驱油封存一体化示范项目子项“延长油田液态CO2管道输送可行性研究”(项目编号ycsy2015ky-B-02);陕西省重点研发计划项目“基于CCUS的含杂质CO2管道输送安全关键技术研究”(项目编号2022SF-233)。作者简介:陈兵(1969—),女,工程硕士,教授,主要从事油气田地面输送技术和石油石化设备腐蚀与安全防护技术研究工作。
更新日期/Last Update: 2022-09-26