[1]毕宗岳,张锦刚,余晗,等.低碳微合金钢连续管低周疲劳性能研究[J].焊管,2023,46(7):38-44.[doi:10.19291/j.cnki.1001-3938.2023.07.005]
 BI Zongyue,ZHANG Jingang,YU Han,et al.Study on Low Cycle Fatigue Property of Low Carbon Microalloyed Steel Coiled Tubing[J].,2023,46(7):38-44.[doi:10.19291/j.cnki.1001-3938.2023.07.005]
点击复制

低碳微合金钢连续管低周疲劳性能研究()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
46
期数:
2023年第7期
页码:
38-44
栏目:
试验与研究
出版日期:
2023-07-19

文章信息/Info

Title:
Study on Low Cycle Fatigue Property of Low Carbon Microalloyed Steel Coiled Tubing
文章编号:
10.19291/j.cnki.1001-3938.2023.07.005
作者:
毕宗岳张锦刚余晗鲜林云
1. 中油国家石油天然气管材工程技术研究中心有限公司,西安 710018;
2. 中国石油宝鸡石油钢管有限责任公司,陕西 宝鸡 721008;
3. 陕西省高性能连续管重点实验室,陕西 宝鸡 721008
Author(s):
BI Zongyue ZHANG Jingang YU Han XIAN Linyun
1. Chinese National Engineering Research Center for Petroleum and Natural Gas Tubular Goods Co., Ltd., Xi’an 710018, China; 2. CNPC Baoji Petroleum Steel Pipe Co., Ltd.,Baoji 721008, Shaanxi, China; 3. Shaanxi Province Key Laboratory of High Performance Coiled Tubing, Baoji 721008, Shaanxi, China
关键词:
连续管低碳微合金钢低周疲劳硬化指数
Keywords:
coiled tubing low carton microalloyed steel low cycle fatigue hardening exponent
分类号:
TG113.255
DOI:
10.19291/j.cnki.1001-3938.2023.07.005
文献标志码:
A
摘要:
通过控制应变和控制应力方法,对12CrMnMoNi低碳微合金钢连续管管材进行了室温下的低周疲劳试验和循环应变硬化测试,分析了影响疲劳寿命的因素。结果显示,在0.4%~1.2%不同应变幅条件下,管材总体呈现循环软化现象,在1.2%大应变幅下疲劳寿命只有54次,是0.6%~0.8%应变幅的20%左右;在循环初始阶段,低应变表现为循环软化,高应变表现为循环硬化,临界应变(εc)介于0.8%~1.0%。在控制应力高于屈服强度5%时,平均疲劳寿命为318次,表明管材在承受较高载荷下仍具有良好的疲劳性能;同时,硬化指数对疲劳寿命有直接影响,在总循环次数的50%以内,随着循环次数的增加,硬化指数增加,表明该管材在循环过程中依靠硬化实现均匀变形的能力增强;细小的铁素体+M/A组元是实现良好疲劳性能的组织保障;断口SEM观察表明,疲劳裂纹起源于外表面,且伴有二次裂纹产生。
Abstract:
The low cycle fatigue test and cyclic strain hardening test were carried out on 12CrMnMoNi low carbon micro alloyed steel coiled tubing at room temperature by controlling strain and stress,and then the factors affecting fatigue life were analyzed. The results show that under the condition of different strain amplitudes of 0.4%~1.2%, the whole tube exhibits cyclic softening and the fatigue life is only 54 times under the large strain amplitude of 1.2%, which is about 20% of the strain amplitude of 0.6%~0.8%. At the initial stage of the cycle, low strain shows cyclic softening and high strain shows cyclic hardening, and the critical strain (εc) is between 0.8% and 1.0%. When the control stress is higher than the 5% yield strength, the average fatigue life is 318 times, indicating that the material still has good fatigue performance under high loads. At the same time, the hardening index has a direct effect on the fatigue life. Within 50% of the total cycle number, the hardening exponent increases with the increase of the cycle number, indicating that the ability of the tubing to achieve uniform deformation by hardening during the cycle process is enhanced. The fine ferrite and M/A component are the microstructure guarantee to achieve good fatigue performance. The fracture SEM observation results show that the fatigue crack originate from the outer surface, accompanied by secondary cracks.

参考文献/References:

[1] 毕宗岳.连续油管及其应用技术进展[J].焊管,2012,35(9):5-12.[2] 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会.连续油管:GB/T 34204—2017[S].北京:中国标准出版社,2017.[3] American Petroleum Institute.Recommended practice for coiled tubing operations in oil and gas well services:API RP 5C7—1996[S].Washington:API,1996.[4] 毕宗岳,鲜林云, 汪海涛,等.国产超高强度CT110连续管组织与性能[J].焊管,2017,40(3):24-27.[5] 李鸿斌,毕宗岳,刘云,等.超高强度 CT120 连续管研制及性能研究[J].焊管,2020,43(5):24-29.[6] 李鸿斌,任能,鲜林云,等.国产 CT130 连续管性能及现场应用[J].焊管,2020,43(10):23-28.[7] 毕宗岳,张晓峰,张万鹏,等.连续油管疲劳试验机设计与疲劳寿命试验[J].理化检验-物理分册,2012,48(2):79-82.[8] 傅阳朝,李兴明,张强德.连续油管技术[M].北京:石油工业出版社,2000.[9] 毕宗岳,井晓天,何石磊,等.基于大应变下 CT80 连续管疲劳寿命研究[J].材料热处理技术,2010,39(22):19-22.[10] 毕宗岳,张晓峰,张万鹏,等.连续管疲劳寿命试验研究[J].焊管, 2012,35(6):5-8.[11] KLESNIL M,LUKAS P.Fatigue of matellic materials[M].Amsterdam:Elsevier,1992.[12] 王仁卉,路钢华,邹化民,等.形变晶体的位错结构[J]. 武汉大学学报(自然科学版),1988(2):121-128.[13] 孔君华,吴力新,谢长生.热轧工艺对低碳微合金钢组织与性能的影响[J].热加工工艺, 2004(11):43-45.[14] 徐永波,刘民治,朱桂秋,等.金属材料形变与断裂过程的动态观察——I.珠光体组织的形变与断裂[J].金属学报, 1980(4):117-118,137.[15] 李麟.相变塑性钢[M].北京:科学出版社,2009.[16] 李守新,翁宇庆,惠卫军,等.高强度钢超高周疲劳性能[M].北京:冶金工业出版社,2010.[17] 张 栋,钟培道,陶春虎,等.失效分析[M].北京:国防工业出版社,2004.[18] 坎贝尔.断裂力学在选材方面的应用[M].汪一麟,邵本逑,译.北京:冶金工业出版社,1992.

相似文献/References:

[1]毕宗岳,付宏强 编译.高强度连续管[J].焊管,2007,30(6):85.[doi:1001-3938(2007)06-0085-05]
 Edited and Translated by BI Zong-yue,FU Hong-qiang.High Strength Coiled Tubing[J].,2007,30(7):85.[doi:1001-3938(2007)06-0085-05]
[2]毕宗岳,张锦刚.连续管焊丝的试验研究[J].焊管,2008,31(1):26.[doi:1001-3938(2008)01-0026-03]
 BI Zong-yue,ZHANG Jin-gang.Testing & Research of Welding Wire Used for Coil Tubing[J].,2008,31(7):26.[doi:1001-3938(2008)01-0026-03]
[3]卢雪峰,石凯,周建宏,等.焊缝碾压形变热处理及其在连续管中的应用[J].焊管,2009,32(4):35.[doi:1001-3938(2009)04-0035-03]
 LU Xue-feng,SHI Kai,ZHOU Jian-hong,et al.Weld Thermomechanical Treatment with Roller Compaction and It’s Application in Coiled Tubing Manufacture[J].,2009,32(7):35.[doi:1001-3938(2009)04-0035-03]
[4]李霄,石凯,刘彦明,等.连续管焊接工艺及接头性能研究[J].焊管,2012,35(5):15.[doi:1001-3938(2012)05-0015-04]
 LI Xiao,SHI Kai,LIU Yan-ming,et al.Research on Coiled Tubing Butt Welding Process and Properties of Welded Joint[J].,2012,35(7):15.[doi:1001-3938(2012)05-0015-04]
[5]鲁明春,鲍海霞,陈为民,等.连续管水平井作业下入深度计算及应用[J].焊管,2014,37(7):31.[doi:1001-3938(2014)07-0031-04]
 LU Mingchun,BAO Haixia,CHEN Weimin,et al.Running Depth Calculation and Application of Coiled Tubing(CT) Horizontal Well Operation[J].,2014,37(7):31.[doi:1001-3938(2014)07-0031-04]
[6]鲁明春.水平井连续管存储式测井技术在涩北气田的试验应用[J].焊管,2014,37(11):27.[doi:1001-3938(2014)11-0027-03]
 LU Mingchun.Test Application of Horizontal Coiled Tubing Store Type Logging Technology in China Sebei Gas Field[J].,2014,37(7):27.[doi:1001-3938(2014)11-0027-03]
[7]付宏强,郜 飞.国内外连续管标准简介[J].焊管,2015,38(2):68.[doi:1001-3938(2015)02-0068-05]
 FU Hongqiang,GAO Fei.Brief Introduction for Coiled Tubing (CT) Standard at Home and Abroad[J].,2015,38(7):68.[doi:1001-3938(2015)02-0068-05]
[8]汪海涛,等.高强度CT100连续管力学性能研究[J].焊管,2016,39(4):1.[doi:10.19291/j.cnki.1001-3938.2016.04.001]
 WANG Haitao,YU Han,CHANG Yongle,et al.Mechanical Properties Research of High Strength CT100 Coiled Tubing[J].,2016,39(7):1.[doi:10.19291/j.cnki.1001-3938.2016.04.001]
[9]王维亮,等.连续管管-管对接自动焊技术研究[J].焊管,2016,39(12):9.[doi:10.19291/j.cnki.1001-3938.2016.12.003]
 WANG Weiliang,Yu Han,et al.Automatic Welding Technology Research on Coiled Tubing Butt Welding[J].,2016,39(7):9.[doi:10.19291/j.cnki.1001-3938.2016.12.003]
[10]毕宗岳,等.国产超高强度CT110连续管组织与性能[J].焊管,2017,40(3):24.[doi:10.19291/j.cnki.1001-3938.2017.03.006]
 BI Zongyue,XIAN Linyun,et al.Microstructure and Mechanical Properties of Domestic Ultra-high Strength?CT110 Grade Coiled Tubing[J].,2017,40(7):24.[doi:10.19291/j.cnki.1001-3938.2017.03.006]

备注/Memo

备注/Memo:
收稿日期:2022-09-27
基金项目: 中国石油科学研究与技术开发项目“连续管井下电动马达钻井系统研究”(项目编号2021DJ4305)。
作者简介:毕宗岳(1962—),男,工学博士,教授级高级工程师,宝鸡石油钢管有限责任公司首席技术专家,主要从事油气输送管材开发及焊接工艺技术研究工作。
更新日期/Last Update: 2023-07-19