[1]牛辉,李拔,刘斌,等.MnS夹杂和氢分压耦合作用对X80管线钢氢脆敏感性影响研究[J].焊管,2023,46(10):1-7.[doi:10.19291/j.cnki.1001-3938.2023.10.001]
 NIU Hui,LI Ba,LIU Bin,et al.Effect of MnS Inclusion and Hydrogen Partial Pressure Coupling on Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel[J].,2023,46(10):1-7.[doi:10.19291/j.cnki.1001-3938.2023.10.001]
点击复制

MnS夹杂和氢分压耦合作用对X80管线钢氢脆敏感性影响研究()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
46
期数:
2023年第10期
页码:
1-7
栏目:
试验与研究
出版日期:
2023-10-19

文章信息/Info

Title:
Effect of MnS Inclusion and Hydrogen Partial Pressure Coupling on Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel
文章编号:
10.19291/j.cnki.1001-3938.2023.10.001
作者:
牛辉李拔刘斌韦奉汪兵贾书君刘清友
1. 中油国家石油天然气管材工程技术研究中心有限公司,西安 710018; 2. 中国石油宝鸡石油钢管有限责任公司,陕西 宝鸡 721008; 3. 钢铁研究总院有限公司,北京 100081
Author(s):
NIU Hui LI Ba LIU Bin WEI Feng WANG Bing JIA Shujun LIU Qingyou
1. Chinese National Engineering Research Center for Petroleum and Natural Gas Tubular Goods Co., Ltd., Xi’an 710018, China; 2. CNPC Baoji Petroleum Steel Pipe Co., Ltd., Baoji 721008, Shaanxi, China; 3. Central Iron and Steel Research Institute Co., Ltd., Beijing 100081, China
关键词:
输氢管X80 管线钢氢脆敏感性氢分压MnS夹杂
Keywords:
hydrogen transportation pipeline X80 pipeline steel hydrogen embrittlement sensitivity hydrogen partial pressure MnS inclusion
分类号:
TG113
DOI:
10.19291/j.cnki.1001-3938.2023.10.001
文献标志码:
A
摘要:
为了研究含有较多夹杂物的X80管线钢在空气介质和不同氢分压条件下的氢脆敏感性,采用慢拉伸试验机分别在空气和不同压力氢气环境中进行缺口慢拉伸试验,采用金相显微镜和扫描电子显微镜对断口形貌和成分进行表征分析。结果表明,包含较多夹杂物的X80管线钢在空气介质中的缺口慢拉伸断裂方式为韧性断裂;管线钢在0.6 MPa、1 MPa、3 MPa和6 MPa氢分压条件下的断面收缩率损失率分别为32.4%、74.2%、84.6%和86.6%,即在氢分压增加到1 MPa时发生了氢脆,这是夹杂物和氢分压共同作用的结果;条带状MnS与基体的界面位置在氢的作用下形成微裂纹,并进一步扩展形成环向裂纹;同时,成串的MnS夹杂促进了微孔洞的形核,并在氢分压的作用下扩展连接形成大尺寸裂纹,导致塑性急剧降低。通过分析夹杂物与氢分压对X80管线钢氢脆敏感性的影响,为输氢管线的建设提供技术参考。
Abstract:
In order to study the hydrogen embrittlement sensitivity of X80 pipeline steel with more inclusions under air medium and different hydrogen partial pressure conditions, slow tensile testing machines were used to conduct notch slow tensile tests in air and hydrogen environments at different pressures. The fracture morphology and composition were characterized and analyzed using metallographic microscopy and scanning electron microscopy. The results show that the fracture mode of notch slow tensile of the X80 steel containing more inclusions in air medium was ductile fracture. Under the conditions of 0.6 MPa, 1 MPa, 3 MPa and 6 MPa, hydrogen partial pressure, the loss rates of the reduction of area were 32.4%, 74.2%, 84.6% and 86.6% respectively. In other words, hydrogen embrittlement occurred when the hydrogen partial pressure increases to 1 MPa, which was the result of the joint action of inclusions and hydrogen partial pressure. Microcracks were formed at the interface between banded MnS and matrix under the action of hydrogen, and then further propagated to form the circumferential cracks. Meanwhile, the series of MnS inclusions promoted the nucleation of micropores, and expand to form a large size crack by the action of hydrogen partial pressure, resulting in a sharp reduction of plasticity. By analyzing the effects of inclusions and hydrogen partial pressure on the hydrogen embrittlement sensitivity of X80 pipeline steel, technical reference is provided for the construction of hydrogen transmission pipelines.

参考文献/References:

[1] 杨静,王晓霖.氢气长距离管输技术现状与探讨[J].压力容器,2021,38(2):80-86.[2] 刘自亮,雄思江.氢气管道与天然气管道的对比分析[J].压力容器,2020,37(2):56-61.[3] 赵德辉,徐庆虎,崔德春,等.管线钢在含氢气的煤制天然气中服役安全性评估[J].工程科学学报,2016,38(7):952-957.[4] HAESELDONCKX D, D’HAESELEER W.The use of the natural?as pipeline infrastructure for hydrogen transport in a changing market structure[J].International Journal of Hydrogen Energy,2007,32(10-11):1381-1386.[5] 白光乾,王秋岩,邓海全,等.氢环境下X52管线钢的抗氢性能[J].材料导报,2020,34(11):22130-22135.[6] BTIOTTET L,BATISSE R,DINECHIN G D,et al.Recom?endations on X80 steel for the design of hydrogen gas transmission pipelines[J].International Journal of Hydrogen Energy,2012,37(11):9423-9430.[7] MENG B,GU C,ZHANG L,et al.Hydrogen effects on X80 pipeline steel in high?ressure natural gas/hydrogen mixtures[J]. International Journal of Hydrogen Energy,2017,42(11):7404-7412.[8] MORO I,BRIOTTET L,LEMOINE P,et al.Hydrogen embrittle?ent susceptibility of a high strength steel X80[J].Materials Science and Engineering:A,2010,527(27-28):7252-7260.[9] 张体明,王勇,赵卫民,等.高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J].金属学报,2015,51(9):1101-1110.[10] 史昊,邢云颖,王修云.煤制气环境中氢含量对X80管线钢氢脆敏感性的影响规律[J].腐蚀与防护,2018,39(5):336-339.[11] 金立果,邢云颖.X80管线钢在含氢煤制气环境中的氢脆敏感性[J].腐蚀与防护,2017,38(5):361-364.[12] QIN W,THOMAS A, CHENG Z Q,et al.Key factors affecting hydrogen trapping at the inclusions in steels:A combined study using microprint technique and theoretical modeling[J].Corrosion Science,2022(200):110239.[13] 任学冲,褚武扬,李金许,等.MnS夹杂对钢中氢扩散行为的影响[J].北京科技大学学报,2007(2):232-236.[14] 钟振前,田志凌,唐树平.0Cr16Ni5Mo钢中条状夹杂物对氢扩散过程的影响[J].材料热处理学报,2016,37(2):84-89.[15] 镇凡,刘静,黄峰,等.夹杂物对X120管线钢氢致开裂的影响[J].中国腐蚀与防护学报,2010,30(2):145-149,154.[16] PENG Z,LIU J,HUANG F,et al.The significance of inclusion morphology and composition in governing hydrogen trans?ortation and trapping in steels[J].International Journal of Hydrogen Energy,2021,46(56):28811-28822.[17] ZHAO W,ZHANG T,ZHAO Y,et al.Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high?ressure coal gas environment[J].Corrosion Science,2016,111(10):84-97.[18] XUE H B CHENG Y F.Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen?nduced cracking[J].Corrosion science,2011,53(4):1201-1208.[19] LUU W C,WU J K.Effects of sulfide inclusion on hydrogen transport in steels[J].Materials Letters,1995,24(1-3):175-179.[20] YAMAMOTO K,YAMAMURA H,SUWA Y.Behavior of non-metallic inclusions in steel during hot deformation and the effects of deformed inclusions on local ductility[J].Trans?ctions of the Iron and Steel Institute of Japan,2011,51(12):1987-1994.

相似文献/References:

[1]孔君华,郑琳,刘小国,等.西气东输二线工程用X80管线钢热轧板卷的组织与韧性[J].焊管,2011,34(5):5.

备注/Memo

备注/Memo:
收稿日期:2022-09-07基金项目: 中国石油天然气集团有限公司前瞻性基础性及战略性技术攻关课题“中长距离管道纯氢/掺氢输送关键技术研究”(项目编号2021DJ5002(JT))。作者简介:牛辉(1969—),女,硕士,教授级高工,主要从事油气输送管材开发及焊接工艺技术研究工作。
更新日期/Last Update: 2023-10-26