[1]丁浪勇,赵国仙,刘冉冉,等.不同Cl-浓度下SRB对抗微生物腐蚀管材性能的影响[J].焊管,2024,47(1):13-19.[doi:10.19291/j.cnki.1001-3938.2024.01.003]
 DING Langyong,ZHAO Guoxian,LIU Ranran,et al.Effect of SRB on Microbial Anti?orrosion Pipes under Different Cl- Concentration[J].,2024,47(1):13-19.[doi:10.19291/j.cnki.1001-3938.2024.01.003]
点击复制

不同Cl-浓度下SRB对抗微生物腐蚀管材性能的影响()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
47
期数:
2024年第1期
页码:
13-19
栏目:
试验与研究
出版日期:
2024-02-01

文章信息/Info

Title:
Effect of SRB on Microbial Anti?orrosion Pipes under Different Cl- Concentration
文章编号:
10.19291/j.cnki.1001-3938.2024.01.003
作者:
丁浪勇赵国仙刘冉冉张思琦宋洋王映超张雅妮胥聪敏李兰云
1. 西安石油大学 材料科学与工程学院,西安 710065; 2. 西安摩尔石油工程实验室股份有限公司,西安 710065
Author(s):
DING Langyong ZHAO Guoxian LIU Ranran ZHANG Siqi SONG Yang WANG Yingchao ZHANG Yani XU Congmin LI Lanyun
1. Xi’an Shiyou University, School of Material Science and Technology, Xi’an 710065, China; 2. Xi’an Maurer Petroleum Engineering Laboratory Co., Ltd., Xi’an 710065, China
关键词:
抗微生物腐蚀管材SRBCl-浓度腐蚀产物腐蚀速率
Keywords:
microbial anti?orrosion pipe SRB Cl- concentration corrosion products corrosion rate
分类号:
TG172.7
DOI:
10.19291/j.cnki.1001-3938.2024.01.003
文献标志码:
A
摘要:
针对油田复杂环境下管材发生腐蚀失效问题,采用SEM、EDS及XRD对试样在不同Cl-浓度下(0 g/L、20 g/L、40 g/L、80 g/L和120 g/L)腐蚀后的表面形貌、腐蚀产物的成分及物相组成进行分析,通过电化学测试,研究了不同Cl-浓度下SRB对抗微生物腐蚀管材性能的影响。结果发现,Cl-浓度为20 g/L时最适宜SRB生长,但此时SRB对抗微生物腐蚀管材的腐蚀性最小,此后随着Cl-浓度升高,生物膜减少,腐蚀速率增大;当Cl-浓度分别为0 g/L、20 g/L时,在腐蚀产物中检测出FeS和Fe3(PO4)2,且腐蚀均受阴极反应控制。因此,在不同Cl-浓度下,SRB对抗微生物腐蚀管材性能的影响与试样表面形成的生物膜有关,随着Cl-浓度的增加,SRB对抗微生物腐蚀管材腐蚀作用减小。
Abstract:
In response to of corrosion failure on pipes in complex oilfield environments, SEM, EDS, and XRD were used to analyze the surface morphology, composition of corrosion products, and phase composition of the samples after corrosion at different Cl- concentrations (0 g/L, 20 g/L, 40 g/L, 80 g/L, and 120 g/L). The electrochemical test was used to study the effect of SRB on microbial anticorrosion resistant pipe under different Cl-. When the of Cl- is 20 g/L, the growth of SRB is the most suitable, but the corrosion of SRB to microbial anti?orrosion resistant pipe is the least. With the increase of Cl- , the biofilm decreased and the corrosion rate increased. When the Cl- was 0 g/L and 20 g/L, FeS and Fe3(PO4)2 were detected in the corrosion products, and the corrosion was controlled by cathodic reactions. Therefore, at different Cl- concentrations, the effect of SRB on the performance of microbial anticorrosion resistant pipes is related to the biofilm formed on the surface of the sample. As the Cl- concentration increases, the corrosion resistance of SRB on microbial anticorrosion resistant pipes decreases.

参考文献/References:

[1] JAVAHERDASHTI REZA.A review of some characteristics of MIC caused by sulfate?educing bacteria:past,present and future[J].Anti Corrosion Methods & Materials,1999,46(3):173-180.[2] 朱清华,张剑,刘清云,等.江汉注水系统SRB腐蚀特征与危害[J]. 清洗世界, 2019, 35(4): 48-51.[3] 戚蓥梦.环戊烯氧化制戊二醛催化剂的合成及性能研究[D].上海:上海应用技术大学, 2021.[4] LIU H,ZHONG X,LIU H F,et al.Microbiologically?nhanced galvanic corrosion of the steel beneath a deposit in simulated oilfield?roduced water containing Desulfotomaculum nigrif?cans[J].Electrochemistry Communications,2018(90):1-5.[5] WEI L X,GE Y,GAO Q H,et al.Effect of salt?esistant polymer flooding system SRB on corrosion behavior of 20# carbon steel under deposition[J].Journal of Electroanalytical Chemistry,2022(921):116714.[6] WU C, WANG Z P, ZHANG Z, et al. Influence of crevice width on sulfate?educing bacteria (SRB)?nduced corrosion of stain-less steel 316L[J]. Corrosion Communications, 2021(4):33-44.[7] WANG X. Corrosion of carbon steel in presence of mixed deposits under stagnant seawater conditions[J]. Journal of Loss Prevention in the Process Industries, 2017(45):29-42.[8] Xie F, Li J H, Zou T, et al. Stress corrosion cracking behavior induced by sulfate?educing bacteria and cathodic protection on X80 pipeline steel[J].Construction and Building Materials, 2021(308):125093.[9] 于勇, 王元春, 樊学华, 等.硫酸盐还原菌作用下Cl-浓度对20号钢在高矿化度油田卤水中腐蚀行为的影响[J]. 腐蚀与防护,2015,36(1):45-48.[10] GUO M X, TANG J R, PENG C, et al. Effects of salts and its mixing ratio on the corrosion behavior of 316 stainless steel exposed to a simulated salt?ake atmospheric environment[J]. Materials Chemistry and Physics,2022,(276):125380.[11] WAN Y,TAN J,ZHU S,et al.Insight into atmospheric pitting corrosion of carbon steel via a dual?eam FIB/SEM system associated with high?esolution TEM[J].Corrosion Science,2019(152):226-233.[12] 王欣.(Ce/La,MM)基RE-Fe-B快淬带磁性能与Ce磁体电化学性质研究[D].北京:钢铁研究总院,2022.[13] 陈跃良, 张柱柱, 张勇,等.盐雾腐蚀环境对38CrMoAl钢动态力学性能的影响[J].稀有金属材料与工程,2021,50(6):2040-2051.[14] XIE F,WANG Y X,WANG D,et al.Influence of anion and sulfate?educing bacteria on the stress corrosion behavior and mechanism of X70 steel in a marine mud environment[J]. Engineering Failure Analysis, 2023(143):106834.[15] 郭紫薇.阴离子和硫酸盐还原菌作用下X70管线钢的腐蚀行为研究[D].抚顺:辽宁石油化工大学, 2019.[16] 辛征,于勇,王元春,等.Cl-浓度对硫酸盐还原菌体系中316L不锈钢腐蚀行为的影响[J].材料保护,2014,47(5):57-60.[17] CUI L Y,LIU Z Y,XU D K,et al.The study of microbiolo?ically influenced corrosion of 2205 duplex stainless steel based on high?esolution characterization[J].Corrosion Scien?e, 2020(174):108842.[18] 万红霞,李婷婷,宋东东等.X80管线钢在硫酸盐还原菌作用下的腐蚀行为[J].表面技术,2020,49(9):281-290.[19] LI Y,FENG S,LIU H,et al.Bacterial distribution in SRB biofilm affects MIC pitting of carbon steel studied using FIB-SEM[J].Corrosion Science, 2020(167):108512.[20] 吕茜娣,廖柯熹,陈晓明,等.SRB对20碳钢在气田采出水中腐蚀行为的影响[J].材料保护,2019,52(8):88-94.[21] 赵佳怡,甄世军,张翠云,等.冀中地热区深部热水微生物群落组成及其功能预测[J].地球学报,2021,42(5):605-616.[22] 杨生浛.基于硫酸根自由基的高级氧化技术对甲基橙的降解研究[D].太原:山西农业大学,2019.[23] 魏阳.钙钛矿纳米材料LaNiO3诱导巨噬细胞自噬效应研究[D].南昌:江西师范大学, 2021.[24] 董惠.磁性气泡石载体生物膜系统的除磷机理研究[D].长春:东北师范大学,2016.[25] 张弛.原位自生TiC/AlCoCrFeNi高熵合金组织和性能研究[D]. 西安:西安工业大学,2022.[26] 蓝楠.TiO2/Cu-(AlSiTiCrNbV)N复合涂层的制备与性能研究[D].西安:西安工业大学,2022.[27] 崔艳雨,史笑雨,丁清苗.航煤铁细菌对X80钢腐蚀行为的影响[J].热加工工艺,2021,50(4):38-45.

备注/Memo

备注/Memo:
收稿日期:2023-04-10基金项目: 陕西省自然科学基础研究计划“基于产物膜发育机制的高温高压Fe-O2-CO2体系腐蚀驱动及扰动研究”(项目编号2022JM-269)。
作者简介:丁浪勇(1997—),男,重庆人,工学硕士,研发工程师,现主要从事电子专用材料研究工作。
更新日期/Last Update: 2024-02-01