[1]郭 洋,董志伟,李代龙,等.大壁厚NiCrMoV钢的窄间隙焊接工艺与接头性能[J].焊管,2024,47(2):57-62.[doi:10.19291/j.cnki.1001-3938.2024.02.009]
 GUO Yang,DONG Zhiwei,et al.Narrow Gap Welding Process and Joint Performance of NiCrMoV Steel with Large Wall Thickness[J].,2024,47(2):57-62.[doi:10.19291/j.cnki.1001-3938.2024.02.009]
点击复制

大壁厚NiCrMoV钢的窄间隙焊接工艺与接头性能()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
47
期数:
2024年第2期
页码:
57-62
栏目:
性能表征
出版日期:
2024-02-29

文章信息/Info

Title:
Narrow Gap Welding Process and Joint Performance of NiCrMoV Steel with Large Wall Thickness
文章编号:
10.19291/j.cnki.1001-3938.2024.02.009
作者:
郭 洋董志伟李代龙唐定狼张永强徐 健许德星张国荣
1. 西安交通大学 金属材料强度国家重点实验室,西安 710049;
2. 东方电气集团 东方汽轮机有限公司 清洁高效透平动力装备全国重点实验室,四川 德阳 618000
Author(s):
GUO Yang1 2 DONG Zhiwei1 LI Dailong1 TANG Dinglang 1 ZHANG Yongqiang 1XU Jian2 XU Dexing2 ZHANG Guorong2
1. Xi’an Jiaotong University, State Key Laboratory of Mechanical Behavior for Materials, Xi’an 710049, China;
2. DEC Dongfang Turbine Co., Ltd., State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Deyang 618000, Sichuan, China
关键词:
大壁厚 NiCrMoV钢 窄间隙焊接 显微组织 性能
Keywords:
large wall thickness NiCrMoV steel narrow gap welding microstructure performance
分类号:
TG115
DOI:
10.19291/j.cnki.1001-3938.2024.02.009
文献标志码:
A
摘要:
针对电站设备转子用大壁厚NiCrMoV钢,分析了材料焊接性,采用窄间隙埋弧焊工艺获得了完整的焊接接头,分析了焊接接头的组织、硬度、拉伸与弯曲性能。结果表明,整个焊接接头为完全冶金结合,无裂纹、气孔等缺陷;焊缝组织为回火贝氏体+少量回火马氏体,热影响区中的粗晶区和细晶区均为回火马氏体组织和沿晶界分布的少量碳化物,母材为回火贝氏体+回火马氏体的混合组织;接头热影响区硬度最高,焊缝硬度略低于母材;焊接接头的抗拉强度随着温度的升高逐渐降低,均满足设计要求;焊接接头经过180°弯曲性能测试均未发现微裂纹,表明接头的延展性良好。
Abstract:
The weldability of the material largewall NiCrMoV steel for the rotor of power station equipment was analyzed, and the narrow gap submerged arc welding was used to obtain a integrity welded joint, and the microstructure, hardness, tensile and bending properties of the welded joint were analyzed. The results show that the whole welded joint is completely metallurgically bonded, and has no defects. The microstructure of weld metal is consisted of tempered bainite and small amount of tempered martensite,the CGHAZ and FGHAZ are the tempered martensite and a small amount of carbide distributed in grain boundaries, and the base metal is a mixed microstructure of tempered bainite + tempered martensite.The micorhardness of CGHAZ is the highest, and the hardness of the weld is slightly lower than that of the base metal. The tensile strength of the welded joint gradually decreases with the increase of temperature. No microcracks were found in the 180° bending performance test of the welded joint, indicating that the ductility of the entire welded joint was good.

参考文献/References:

1 史进渊,李军,刘霞,等.我国大型汽轮机技术研究进展与展望[J].动力工程学报,2022,42(6):498-506.2 王朋,霍鑫,丁玉明.核电汽轮机焊接转子技术发展综述[J].热力透平,2015,44(4):296-299,305.3 WANG W,DONG Z,XU Z Z,et al.Local strain hardening behavior in a dissimilar metal welded joint with buttering layer of ultra?upercritical turbine rotor[J].Materials Science & Engineering A,2019,747:244-254.4 LIU P, LU F G, LIU X,et al.Study on fatigue property and microstructure characteristics of welded nuclear power rotor with heavy section[J].Journal of Alloys and Compounds,2014,584:430-437.5 ZHU M L, XUAN F Z. Effect of microstructure on strain hardening and strength distributions along a Cr?i?o? steel welded joint [J]. Materials and Design, 2015, 65:707-715.6 ZHU M L, WANG D Q, XUAN F Z. Effect of long?erm aging on microstructure and local behavior in the heat?ffected zone of a Ni?r?o? steel welded joint [J]. Materials Chara?terization, 2014, 87: 45-61.7 李轶非, 蔡志鹏, 潘际銮, 等. NiCrMoV耐热钢汽轮机转子焊缝韧性薄弱区的成因[J]. 焊接学报, 2014, 35(10): 73-76.8 GUO Y, ZHU B, ZHANG J, et al. Research on the micro zone strength and strain hardening behavior in the 30Cr2Ni4MoV rotor welded joint[J]. Materials Science and Engineering: A, 2023, 862:144456.9 GUO Y, LI Z, ZHANG J, et al. Influence of microstructure on the micro?egion fracture toughness of the 30Cr2Ni4MoV turbine rotor welded joint [J]. International Journal of Pressure Vessels and Piping, 2023,201:104877.10 何阿平, 沈国平, 黄庆华, 等. 中国核电汽轮机发展与展望[J]. 热力透平, 2015, 44(4): 225-232,238.11 陈国浩. 大锻件用NiCrMoV钢[J]. 机械工程材料, 1990(4): 1-5,20.12 王立. 电站转子锻件用钢[J]. 大型铸锻件, 1979(2): 42-70.13 MOON J ,LEE C ,JO H ,et al.Microstructure and high?emperature strength in the weld coarse?rained heat?ffected zone of fire?esistant steels and the effects of Mo and Nb additions[J].Metals and Materials International,2021,28:966-974.14 HAN C,LIU Q,CAI Z.et al.Effect of solidification segregation on microstructure and mechanical properties of a Ni-Cr-Mo-V steel weld metal [J]. Metall Mater Trans A, 2022, 53: 1394-1406. 15 YOU Y E,SHANG C J,SUBRAMANIAN S.Effect of Ni addition on toughness and microstructure evolution in coarse grain heat affected zone[J].Metals and Materials International,2014, 20:659-668. 16 张志明, 高广俊, 印乐, 等. 埋弧焊管焊接接头背面导向弯曲失效原因分析[J]. 焊管, 2021, 44(7): 59-64,68.

相似文献/References:

[1]赵金兰,杨东升,王增辉.试样形式对X65/X70大壁厚海底用直缝埋弧焊管拉伸试验结果的影响[J].焊管,2011,34(7):31.
[2]赵金兰,李记科,李金凤,等.海底管线用大壁厚钢管水压爆破断口分离现象分析[J].焊管,2011,34(11):14.[doi:1001-3938(2011)11-0014-04]
 ZHAO Jin-lan,LI Ji-ke,LI Jin-feng,et al.Analysis on Hydraulic Blasting Fracture Separation of Heavy Wall Thickness Steel Pipe Used in Subsea Pipeline[J].,2011,34(2):14.[doi:1001-3938(2011)11-0014-04]
[3]章传国,郑磊,张备,等.X80 大口径UOE焊管的开发和应用[J].焊管,2012,35(12):19.[doi:1001-3938(2012)12-0019-06]
 ZHENG Lei,ZHANG Chuanguo,ZHANG Bei,et al.Development and Application of X80 Large Diameter UOE Pipe[J].,2012,35(2):19.[doi:1001-3938(2012)12-0019-06]
[4]张国栋,白学军,李 颖,等.低温环境用厚壁大管径X80直缝埋弧焊管宽厚板的开发[J].焊管,2014,37(2):29.[doi:1001-3938(2014)02-0029-04]
 ZHANG Guodong,BAI Xuejun,LI Ying,et al.Development of Heavy Gauge Large Diameter X80 Pipeline Steel Platefor Low Temperature Environment Application[J].,2014,37(2):29.[doi:1001-3938(2014)02-0029-04]
[5]牛爱军,罗卓辉,毕宗岳,等.深海管线用X70厚壁管线钢的组织及性能分析[J].焊管,2014,37(10):5.[doi:1001-3938(2014)10-0005-06]
 NIU Aijun,LUO Zhuohui,BI Zongyue,et al.Analysis on Microstructure and Properties of X70 Pipeline Steelwith Heavy Wall Thickness Used for Deep-sea Pipeline[J].,2014,37(2):5.[doi:1001-3938(2014)10-0005-06]
[6]谌铁强,宋 欣,张国栋,等.低碳贝氏体型厚壁X70管线钢低温韧性研究[J].焊管,2014,37(12):10.[doi:1001-3938(2014)12-0010-06]
 CHEN Tieqiang,SONG Xin,ZHANG Guodong,et al.Study on Low Temperature Toughness of Low Carbon Bainitic X70 Pipeline Steel with Heavy Wall Thickness[J].,2014,37(2):10.[doi:1001-3938(2014)12-0010-06]
[7]张志明,韩秀林,姜金星,等.X80M钢级1 219 mm×33 mm管线钢管的开发[J].焊管,2015,38(9):32.[doi:1001-3938(2015)09-0032-05]
 ZHANG Zhiming,HAN Xiuling,JIANG Jinxin,et al.Development of X80M Steel Grade 1 219 mm×33 mm Pipeline Steel Pipe[J].,2015,38(2):32.[doi:1001-3938(2015)09-0032-05]
[8]牛爱军,等.深海用高强厚壁直缝埋弧焊管开发技术难点分析[J].焊管,2015,38(11):15.[doi:1001-3938(2015)11-0015-05]
 NIU Aijun,YIN Lihong,et al.Technical Difficulties Analysis on Development of SAWL Pipe Used for Deep-sea Pipeline with High Strength and Heavy Wall Thickness[J].,2015,38(2):15.[doi:1001-3938(2015)11-0015-05]
[9]刘振伟,王海生,王玉庆,等.大壁厚螺旋埋弧焊管补焊工艺研究[J].焊管,2016,39(6):38.[doi:10.19291/j.cnki.1001-3938.2016.06.009]
 LIU Zhenwei,WANG Haisheng,WANG Yuqing,et al.Study on Repair Welding Process of Large Wall Thickness SAWH Pipe[J].,2016,39(2):38.[doi:10.19291/j.cnki.1001-3938.2016.06.009]
[10]沈建刚,孙少卿,刘常庆,等.大壁厚螺旋埋弧焊管超声波串列式自动扫查的应用[J].焊管,2018,41(6):33.[doi:10.19291/j.cnki.1001-3938.2018.06.007]
 SHEN Jiangang,SUN Shaoqing,LIU Changqing,et al.Application of Automatic Ultrasonic Tandem Scanning forThick Wall Spiral Submerged Arc Welded Pipe[J].,2018,41(2):33.[doi:10.19291/j.cnki.1001-3938.2018.06.007]

备注/Memo

备注/Memo:
收稿日期:2023-10-07
基金项目:国家重点研发计划“面向载能束增材修复与再制造的集约化合金设计与制备”(项目编号2018YFB1105803)。
作者简介:郭 洋 (1988—),男,高级工程师,博士研究生,主要从事焊接及修复再制造技术与理论研究。
更新日期/Last Update: 2024-03-06