[1]王学林,等.高强度管线钢焊接热影响区显微组织精细表征[J].焊管,2019,42(7):26-38.[doi:10.19291/j.cnki.1001-3938.2019.7.003]
 WANG Xuelin,LI Xueda,et al.Fine Characterization of High Strength Pipeline Steel Welding HAZ Microstructure[J].,2019,42(7):26-38.[doi:10.19291/j.cnki.1001-3938.2019.7.003]
点击复制

高强度管线钢焊接热影响区显微组织精细表征()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
42
期数:
2019年第7期
页码:
26-38
栏目:
会议专辑
出版日期:
2019-07-28

文章信息/Info

Title:
Fine Characterization of High Strength Pipeline Steel
Welding HAZ Microstructure
文章编号:
10.19291/j.cnki.1001-3938.2019.7.003
作者:
王学林1 2李学达3尚成嘉1
1. 北京科技大学钢铁共性技术协同创新中心, 北京 100083;
2. 重庆铜梁高新技术产业开发区管委会, 重庆 402560;
3. 中国石油大学(华东) 材料科学与工程学院, 山东 青岛 266580
Author(s):
WANG Xuelin 1 2 LI Xueda 3 SHANG Chengjia 1
1. Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China;
2. Management Committee of Chongqing Tongliang High Technology Industry Development Zone, Chongqing 402560, China;
3. School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
关键词:
管线钢冲击韧性焊接热影响区显微组织
Keywords:
pipeline steel impact thoughness welding HAZ microstructure
分类号:
TG115
DOI:
10.19291/j.cnki.1001-3938.2019.7.003
文献标志码:
A
摘要:
为了认清焊接过程显微组织的演变过程,对显微组织进行了精细化表征。结合多年来对高性能管线钢的研究实践,认为粗晶热影响区性能较易通过调整热输入量来改善,而对于临界粗晶热影响区,由于二次热循环峰值温度不可避免地会落在Ac1~Ac3的两相区,致使高C含量的脆性链状M-A形成,且其占比含量高,尺寸粗大,极易成为脆性裂纹的起裂源,进而恶化低温冲击韧性。为了改善临界粗晶区韧性,必须严格控制脆性M-A尺寸、分布及含量。有效方案是合理设计管线钢关键合金成分(Nb、Ni等),控制粗晶区奥氏体尺寸,促进二次热循环过程奥氏体相变更完全,以此来抑制链状M-A的形成和改善低温韧性。
Abstract:
In order to understand the evolution of microstructure in welding process, fine characterization of microstructure is carried out. Based on years of research and practice of high performance pipeline steel, it is concluded that the performance of coarse crystal heat affect zone(HAZ) is easy to be improved by adjusting heat input. For the critical coarse crystal HAZ, the peak temperature of the secondary thermal cycle inevitably falls into the two-phase zone between Ac1 and Ac3 , resulting in the formation of brittle chain M-A with high C content. Due to the high proportion and large size of M-A, it is easy to become the initiation source of brittle crack, which further worsens the low-temperature impact toughness. Therefore, in order to improve the toughness of critical coarse crystal zone, the size, distribution and content of brittle M-A must be strictly controlled. The effective scheme is to reasonably design the key alloy composition of pipeline steel , such as Nb/Ni and so on, control the austenite size of coarse crystal zone, promote the complete change of austenite phase in the secondary thermal cycle process, so as to inhibit the formation of chain M-A and improve the low temperature toughness.

参考文献/References:

[1] SHANG C J, MIAO C L, LIU Z W, et al. Development of higher Nb X80 pipeline steel in China[C]//Proceedings of the International Conference on Microalloyed Pipe Steels for Oil and Gas Industry. Held in Moscow, Russia: [s.n.],  2013: 30-44.
[2] SHANG C J, WANG X L, LI X D, et al. Weldability of high niobium bearing X80 pipeline steel for the Second West to East pipeline project[C] // 6th International Pipeline Technology Conference. Ostend, Belgium: [s.n.], 2013: 1-10.
[3] SHANG C J, GUO F J. The state of the art of long distance gas pipeline in China[C]//International Gas Union Research Conference. Rio, Brazil: [s.n.], 2018: 24-29.
[4] SHANG C J, XIA D X, WANG X L, et al. The development of third generation pipeline steel in China[C]//6th International Pipeline Technology Conference. Ostend, Belgium: [s.n.], 2013: 1-14.
[5] 夏佃秀, 王学林, 李秀程, 等. X90级别第三代管线钢的力学性能与组织特征[J]. 金属学报, 2013, 49(3):271-276.
[6] SHANG C J, WANG X L, XIA D X, et al. Development of higher ductility and lower strain aging sensitivity X90/X100 pipeline steel[C]//Energy Materials 2014. Xi’an, China: [s.n.], 2014: 605-611.
[7] 尚成嘉,王学林. 高性能钢焊接物理冶金研究进展[J]. 世界金属导报, 2016(3): 1-8.
[8] 缪成亮, 尚成嘉, 王学敏, 等. 高Nb X80管线钢焊接热影响区显微组织与韧性[J]. 金属学报, 2010, 46(5):541-546.
[9] 缪成亮, 刘振伟, 郭晖, 等. Nb含量和热输入量对X80管线钢焊接粗晶区的影响[J]. 材料热处理学报,2012, 33(1): 99-105.
[10] YOU Y, SHANG C J, NIE W J, et al. Investigation on the microstructure and toughness of coarse grained heat affected zone in X100 multi-phase pipeline steel with high Nb content [J]. Materials Science and Engineering A, 2012(5): 692-701.
[11] 李学达, 范玉然, 陈亮, 等. 多道次环焊焊缝组织变化规律与冲击韧性的关系研究[J]. 焊管, 2015, 38(1):11-16.
[12] 王学林, 董利明, 杨玮玮, 等. Mn/Ni/Mo配比对K65 管线钢焊缝金属组织与力学性能的影响[J]. 金属学报, 2016, 52(6): 649-660.
[13] WANG X L, TSAI Y T, YANG J R, et al. Investigation of the microstructure and toughness of 550 MPa grade pipeline after the hot-bending process[J]. Materials Science and Technology, 2016(3): 664-674.
[14] YOU Y, SHANG C J, CHEN L, et al. Investigation on the crystallography of the transformation products of reverted austenite in intercritically reheated coarse grained heat affected zone[J]. Materials and Design, 2013(43): 485-491.
[15] LI X D, MA X P, SUBRAMANIAN S V, et al. Structure-property-fracture mechanism correlation in heat affected zone of X100 ferrite-bainite pipeline steel[J]. Metallurgical and Materials Transactions E, 2015, 2(1): 1-11.
[16] LI X D, SHANG C J, MA X P, et al. Structure and crystallography of martensite-austenite constituent in the intercritically reheated coarse-grained heat affected zone of a high strength pipeline steel[J]. Materials Characterization,  2018(8): 107-112.
[17] LI X D, SHANG C J, MA X P, et al. Elemental distribution in the martensite-austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel[J]. Scripta Materialia, 2017(9): 67-70.
[18] GOURGUES A F, FLOWER H M, LINDLEY T C. Electron backscattering diffraction study of acicular ferrite, bainite and martensite steel microstructures[J]. Materials Science and Technology, 2000(16): 26-40.
[19] YANG P, LU F Y, MENG L, et al. Study on axiotaxy in high manganese trip steel by EBSD[J]. Acta Metall Sin, 2009(45): 1409-1413.
[20] LI X D, MA X P, SUBRAMANIAN S V, et al. Influence of prior austenite grain size on martensite-austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel[J]. Materials Science and Engineering A, 2014(616): 141-147.
[21] LI X D, FAN Y R, MA X P, et al. Influence of martensite-austenite constituents formed at different intercritical temperatures on toughness[J]. Materials and Design, 2015(67): 457-463.

相似文献/References:

[1]李新华,罗金恒,赵新伟,等.高钢级管线钢失效评估曲线研究[J].焊管,2007,30(4):33.[doi:1001-3938(2007)04-0033-03]
 LI Xin-hua,LUO Jin-heng,ZHAO Xin-wei,et al.Research on Failure Assessment Curves of High Grade Pipeline Steel[J].,2007,30(7):33.[doi:1001-3938(2007)04-0033-03]
[2]宫少涛,王爱民,吉玲康,等.X80与X100级管线钢屈服强度Rt 0.5与Rp 0.2的差异性研究[J].焊管,2007,30(5):42.[doi:1001-3938(2007)05-0042-03]
 GONG Shao-tao,WANG Ai-min,JI Ling-kang,et al.Study on Difference Between Yield Strength Rt 0.5 and Rp 0.2 for X80 and X100 Pipelines Steel[J].,2007,30(7):42.[doi:1001-3938(2007)05-0042-03]
[3]刘庆才,李 东,黎剑锋.影响输气管线钢管抗H2S性能主要因素的探讨[J].焊管,2007,30(5):54.[doi:1001-3938(2007)05-0054-05]
 LIU Qing-cai,LI Dong,LI Jian-feng.Key Factors Affecting Sour Service Ability of Welded Pipe and Its Domestic Production[J].,2007,30(7):54.[doi:1001-3938(2007)05-0054-05]
[4]王树人,崔志新.管线钢落锤撕裂试验异常脆性断口分析[J].焊管,2007,30(6):69.[doi:1001-3938(2007)06-0069-03]
 WANG Shu-ren? CUI Zhi-xin.Analysis on Abnormal Brittle Fracture of DWTT for Pipeline Steel[J].,2007,30(7):69.[doi:1001-3938(2007)06-0069-03]
[5]陶 鹏,张 弛,杨志刚,等.高钢级管线钢的组织和力学性能[J].焊管,2008,31(2):19.[doi:1001-3938(2008)02-0019-04]
 TAO Peng,ZHANG Chi,YANG Zhi-gang,et al.The Microstructure and Mechanical Property of X70,X80 and X100 Grade Pipeline Steel[J].,2008,31(7):19.[doi:1001-3938(2008)02-0019-04]
[6]黄明浩,徐 烽,黄国建.影响管线钢屈强比的因素探讨[J].焊管,2008,31(3):20.[doi:1001-3938(2008)03-0020-04]
 HUANG Ming-hao,XU Feng,HUANG Guo-jian.Discussion on Influencing Factors of Yield Ratio for Pipeline Steel[J].,2008,31(7):20.[doi:1001-3938(2008)03-0020-04]
[7]牛 辉,余大涛,高惠临.管线钢焊接热影响区的组织预测[J].焊管,2008,31(3):28.[doi:1001-3938(2008)03-0028-05]
 NU Hui,YU Da-tao,GAO Hui-lin.Structure Forecast of Pipeline Steel Welding Heat Affected Zone[J].,2008,31(7):28.[doi:1001-3938(2008)03-0028-05]
[8]袁大伟.ERW焊管焊缝冲击韧性的影响因素分析[J].焊管,2008,31(3):68.[doi:1001-3938(2008)03-0068-03]
 YUAN Da-wei.Effecting Factor Analysis for ERW Pipe Weld Impact Toughness[J].,2008,31(7):68.[doi:1001-3938(2008)03-0068-03]
[9]孔君华,郑 琳,关 云,等.西气东输二线工程用18.4 mm厚 X80级热轧板卷生产实践[J].焊管,2008,31(6):50.[doi:1001-3938(2008)06-0050-04]
 KONG Jun-hua,ZHENG Ling,GUAN Yun,et al.Production Experience of X80 Grade Hot Rolled Coil with 18.4 mm Thickness Used〖JZ〗for the Second West to East Gas Pipeline Project[J].,2008,31(7):50.[doi:1001-3938(2008)06-0050-04]
[10]黄国建,张英慧,孔祥磊,等.特厚规格X70和X80级热轧卷板的开发与应用[J].焊管,2009,32(2):17.[doi:1001-3938(2009)02-0017-06]
 HUANG Guo-jian,ZHANG Ying-hui,KONG Xiang-lei,et al.Development and Application of X70 & X80 Grade HRC with Heavy Thickness[J].,2009,32(7):17.[doi:1001-3938(2009)02-0017-06]
[11]杜伟,娄琦,黄磊,等.管线钢JCOE制管前后力学性能变化分析[J].焊管,2010,33(5):20.[doi:1001-3938(2010)05-0020-04]
 DU Wei,LOU Qi,HUANG Lei,et al.Analysis on Mechanical Properties Variation of Pipeline Steel Before and After JCOE Process[J].,2010,33(7):20.[doi:1001-3938(2010)05-0020-04]
[12]马立立,李雅可,郭锦龙,等.快速冷处理对高强度管线钢X120热影响区的微观组织和韧性的影响[J].焊管,2013,36(6):68.[doi:1001-3938(2013)06-0068-05]
 Edited and Translated by MA Lili,LI Yake,GUO Jinlong,et al.Effect of fast cooling process on the microstructure and toughness of heat-affected zone in a high strength pipeline steel X120[J].,2013,36(7):68.[doi:1001-3938(2013)06-0068-05]
[13]董俊明,毛秋英,毕宗岳,等.X100和X80管线钢组织与冲击性能分析[J].焊管,2014,37(12):16.[doi:1001-3938(2014)12-0016-06]
 DONG Junming,MAO Qiuying,BI Zongyue,et al.Analysis on Microstructure and Impact Toughness of X100 and X80 Pipeline Steel[J].,2014,37(7):16.[doi:1001-3938(2014)12-0016-06]
[14]胡 平,郑 磊.热输入对管线钢热模拟焊缝粗晶热影响区冲击韧性的影响[J].焊管,2017,40(6):9.[doi:10.19291/j.cnki.1001-3938.2017.06.002]
 HU Ping,ZHENG Lei.Effect of Welding Heat Input on Impact Toughness of Pipeline Steel Thermal Simulated Weld Seam Coarse Grain Heat Affected Zone[J].,2017,40(7):9.[doi:10.19291/j.cnki.1001-3938.2017.06.002]

备注/Memo

备注/Memo:
收稿日期:2018-12-29
基金项目: 国家自然科学基金“高性能钢中温协变的晶体学特征及对韧性影响机理研究”(项目编号51371001)。
作者简介:王学林(1986—),男,博士后,主要从事高性能海洋工程用钢焊接物理冶金行为研究,发表论文20余篇。
更新日期/Last Update: 2019-08-16