[1]李巧珍,程红斐,候彦明,等.含划痕缺陷埋地管道冲击作用下的动力响应行为研究[J].焊管,2022,45(6):1-7.[doi:10.19291/j.cnki.1001-3938.2022.06.001]
 LI Qiaozhen,CHENG Hongfei,HOU Yanming,et al.Study on Dynamic Response Behavior of Buried Pipeline with Scratch Defect Subjected to Impact Loading[J].,2022,45(6):1-7.[doi:10.19291/j.cnki.1001-3938.2022.06.001]
点击复制

含划痕缺陷埋地管道冲击作用下的动力响应行为研究()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
45
期数:
2022年第6期
页码:
1-7
栏目:
试验与研究
出版日期:
2022-06-28

文章信息/Info

Title:
Study on Dynamic Response Behavior of Buried Pipeline with Scratch Defect Subjected to Impact Loading
文章编号:
10.19291/j.cnki.1001-3938.2022.06.001
作者:
李巧珍程红斐候彦明罗 敏张 强
1. 东北石油大学 机械科学与工程学院,黑龙江 大庆 163318;2. 中石化重型起重运输工程有限责任公司,北京 100029
Author(s):
LI Qiaozhen CHENG Hongfei HOU Yanming LUO Min ZHANG Qiang
1. School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China;2. Sinopec Heavy Lifting and Transportation Engineering Co., Ltd., Beijing 100029, China
关键词:
埋地管道划痕冲击动力学影响因素
Keywords:
buried pipeline scratch impact dynamics influence factors
分类号:
TE832
DOI:
10.19291/j.cnki.1001-3938.2022.06.001
文献标志码:
A
摘要:
为研究含划痕缺陷管道在冲击载荷作用下的动力响应行为,采用显示动力学分析方法,建立含划痕缺陷埋地管道三维三重非线性动力学分析模型,探讨管内流体压力、落物冲击能、划痕缺陷深度对峰值时刻管道动力响应行为的影响规律。结果表明:在落物的冲击作用下,划痕尖端应力集中现象明显,管道极易首先从该位置处发生失效。当落物冲击能为100 kN·m时,管内流体压力由0.5 MPa增至0.8 MPa,管道等效应力由38.2 MPa降至31.5 MPa,管道变形由4.3 mm降至4.1 mm,流体压力一定程度上可以保护受冲击管道;当管内流体压力为0.6 MPa时,落物冲击能由50 kN·m增至240 kN·m,管道等效应力由26.4 MPa增至61.6 MPa,变形由2.6 mm增至6.7 mm;当落物冲击能为100 kN·m时,管道划痕深度由3 mm增至4.5 mm,管道等效应力由35.8 MPa增至39.1 MPa,而变形基本无变化。该项研究相关分析方法以期为冲击致“划痕+凹陷”复合缺陷管道的失效分析提供理论指导。
Abstract:
In order to study the dynamic response behavior of pipeline with scratch defect under impact loading, a three-dimensional triple nonlinear dynamic response model of the buried pipeline with scratch defect, which subjected to impact loading was established by display dynamic analysis method, and the regular laws of pipeline dynamic response changed with fluid pressure, falling object impact energy and scratch defect depth were discussed respectively. The results show that under the impact loading of falling objects, the stress concentration phenomenon at the tip of scratch defect is obvious, and pipeline is easier to fail firstly from this position. When the impact energy is 100 kN·m, with the increse of fluid pressure from 0.5 MPa to 0.8 MPa, the equivalent stress of pipeline decreases from 38.2 MPa to 31.5 MPa. While the change of pipe deformation decreases from 4.3 mm to 4.1 mm, the fluid pressure could protect the impacted pipeline to some extent. When the fluid pressure is 0.6 MPa, with the increase of impact energy from 50 kN·m to 240 kN·m, the equivalent stress of pipeline increases from 26.4 MPa to 61.6 MPa, and the deformation increases from 2.6 mm to 6.7 mm. When the impact energy is 100 kN·m, with the increse of scratch depth from 3 mm to 4.5 mm, the equivalent stress of pipeline increases from 35.8 MPa to 39.1 MPa and the deformation of pipeline is unchanged basically. The relevant analysis method of this study can provide theoretical guidance for the failure analysis of “scratch + depression” composite defect pipeline subjected to impact loading.

参考文献/References:

[1] 田野,朱丽霞,丁融,等. 含复合缺陷油气管道的安全评估现状[J]. 油气储运,2019,38(3): 56-59,64.[2] 伍颖,张鹏,彭星煜,等. 管道中沟槽型凹痕缺陷破裂强度评估方法[J]. 压力容器,2009,26(4):47-50.[3] 曾凡小,徐国富,谭润辉. 含凹陷及沟槽缺陷长输管道剩余强度评价[J]. 石油和化工设备,2020,23(1):53-55. [4] 马欣,李杰,薛涛,等. 含内腐蚀凹陷的压力管道应力应变研究[J]. 塑性工程学报,2018,25(3)::267-273.[5] 刘维洋,马廷霞,邹海翔,等. 含腐蚀凹陷压力管道极限载荷数值分析[J]. 中国安全科学学报,2016,26(6):92-97.[6] 杨旭. 落石冲击作用下埋地腐蚀缺陷管道动力响应分析[D]. 成都:西南石油大学,2018.[7] TADAS V,VITALIJUS R,OLEGAS P,et al. Evaluation of failure pressure for gas pipelines with combined defects[J]. Metals,2018(8):1-13.[8] 田野,朱丽霞,罗金恒,等. X80 管道划伤复合凹陷区的应力应变特征研究[J]. 塑性工程学报,2021,28 (3):177-182.[9] TIAN X,ZHANG H. Failure pressure of medium and high strength pipelines with scratched dent defects[J]. Engineering Failure Analysis,2017(78): 29-40. [10] TIAN X,ZHANG H. Failure criterion of buried pipelines with dent and scratch defects[J]. Engineering Failure Analysis,2017(80): 278-289. [11] ALLOUTI M,SCHMITT C,PLUVINAGE G. Assessment of a gouge and dent defect in a pipeline by a combined criterion[J]. Engineering Failure Analysis,2014(36):1-13.[12] 徐秉业,刘信声. 应用弹塑性力学[M]. 北京:清华大学出版社,1995.[13] 郭乃正,邹金锋,杨小礼,等. 高填方路堤强夯试验与数值模拟研究[J]. 铁道科学与工程学报,2007,4(3):53-57.[14] 李巧珍,罗敏,石宗奇,等. 球状落体冲击条件下埋地管道力学响应行为[J]. 天然气工业,2021,41(12): 136-143.[15] 姚安林,赵师平,么惠全,等. 地下爆炸对埋地输气管道冲击响应的数值分析[J]. 西南石油大学学报(自然科学版),2009,31(4):168-172.

相似文献/References:

[1]冉龙飞,高文浩,吴 栋,等.埋地管道极限悬空长度计算[J].焊管,2014,37(9):56.[doi:1001-3938(2014)09-0056-04]
 RAN Longfei,GAO Wenhao,WU Dong,et al.Extreme Impending Length Calculation of Buried Pipeline[J].,2014,37(6):56.[doi:1001-3938(2014)09-0056-04]
[2]夏连宁,张 亮,李 琦,等.大直径输水钢管承插搭接焊接口设计与应用[J].焊管,2019,42(5):60.[doi:10.19291/j.cnki.1001-3938.2019.5.010]
 XIA Lianning,ZHANG Liang,LI Qi,et al.Design and Application of Socket Lap Welding Joint for Large Diameter Water Transmission Steel Pipe[J].,2019,42(6):60.[doi:10.19291/j.cnki.1001-3938.2019.5.010]
[3]毕宗岳,等.大直径埋地管道应力应变有限元分析与计算[J].焊管,2020,43(3):8.[doi:10.19291/j.cnki.1001-3938.2020.03.002]
 BI Zongyue,CHAO Lining,et al.Stress-strain Finite Element Analysis and Calculation of Large Diameter Buried Pipeline[J].,2020,43(6):8.[doi:10.19291/j.cnki.1001-3938.2020.03.002]
[4]李 明,李秉军,何永志,等.某埋地碳钢管道腐蚀失效分析[J].焊管,2021,44(8):30.[doi:10.19291/j.cnki.1001-3938.2021.08.006]
 LI Ming,LI Bingjun,HE Yongzhi,et al.Corrosion Failure Analysis of a Buried Carbon Steel Pipeline[J].,2021,44(6):30.[doi:10.19291/j.cnki.1001-3938.2021.08.006]
[5]李乔楚,庄波,李联合.岩溶塌陷区埋地管道的挠度和应力分析[J].焊管,2023,46(4):23.[doi:10.19291/j.cnki.1001-3938.2023.04.004]
 LI Qiaochu,ZHUANG Bo,LI Lianhe.Deflection and Stress Analysis of Buried Pipeline in Karst Collapse Area[J].,2023,46(6):23.[doi:10.19291/j.cnki.1001-3938.2023.04.004]

备注/Memo

备注/Memo:
收稿日期:2022-01-04作者简介:李巧珍(1985—),女,博士,讲师,主要从事石油石化装备有限元分析研究工作。基金项目: 黑龙江省属本科高校基本科研业务费项目“复合缺陷管道非线性力学分析及失效机理研究”(项目编号2019QNL-37);黑龙江省自然科学基金项目“液压滚珠整形器整形水平井缩径变形套管机理研究”(项目编号LH2021E011);黑龙江省自然科学基金项目“储气库注采管柱流致振动与屈曲机理及其调控研究”(项目编号LH2020A001)。
更新日期/Last Update: 2022-06-21