[1]吕超,陈绪鑫,刘艳龙,等.基于Fluent的天然气运输管道弯头冲蚀模拟分析与防控措施研究[J].焊管,2023,46(1):13-18.[doi:10.19291/j.cnki.1001-3938.2023.01.003]
 LYU Chao,CHEN Xuxin,LIU Yanlong,et al.Simulation Analysis and Prevention and Control Measures of Elbow Erosion of Natural Gas Transportation Pipeline based on Fluent[J].,2023,46(1):13-18.[doi:10.19291/j.cnki.1001-3938.2023.01.003]
点击复制

基于Fluent的天然气运输管道弯头冲蚀模拟分析与防控措施研究()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
46
期数:
2023年第1期
页码:
13-18
栏目:
试验与研究
出版日期:
2023-01-28

文章信息/Info

Title:
Simulation Analysis and Prevention and Control Measures of Elbow Erosion of Natural Gas Transportation Pipeline based on Fluent
文章编号:
10.19291/j.cnki.1001-3938.2023.01.003
作者:
吕超陈绪鑫刘艳龙殷宏鑫于林辉
1. 东北大学秦皇岛分校 控制工程学院,河北 秦皇岛 066000; 2. 营口东邦环保科技股份有限公司,辽宁 营口 115000
Author(s):
LYU Chao CHEN Xuxin LIU Yanlong YIN Hongxin YU Linhui
1. College of Control Engineering, Qinhuangdao Branch of Northeastern University, Qinhuangdao 066000, Hebei, China; 2. Yingkou Dongbang Environmental Protection Technology Co., Ltd., Yingkou 115000, Liaoning, China
关键词:
天然气管道弯头冲蚀Fluent仿真模拟防控措施
Keywords:
natural gas pipeline elbow erosion fluent simulation prevention and control measure
分类号:
TE832
DOI:
10.19291/j.cnki.1001-3938.2023.01.003
文献标志码:
A
摘要:
针对天然气运输管道的典型弯道冲蚀问题,依据现场实际生产情况,基于Fluent流体模拟软件建立相应的物理模型,选用standard k-ε模型、DPM离散相模型和冲蚀速率方程,分析讨论了固体颗粒直径、气体流速以及弯管角度对弯管冲蚀磨损的影响规律。结果显示:流体流速越快,颗粒对弯道的冲蚀越明显,流速与冲蚀率呈正相关;在同一流速下,随着颗粒粒径的增大,冲蚀率逐渐减小,最后趋于稳定;不同角度的弯头受到的侵蚀是不同的,应根据现场操作环境的差异,设计合适角度的弯头。模拟分析结果表明,天然气流速和固体颗粒直径是影响管道弯头冲蚀率的主要因素,并根据模拟结果提出了冲蚀防控措施。
Abstract:
Aiming at the typical curve erosion problem of natural gas transportation pipeline, according to the actual production situation of the site, the corresponding physical model is established based on Fluent fluid simulation software, and the standard k-ε model, DPM discrete phase model and erosion rate equation are selected to analyze and discuss the impact of solid particle diameter, gas flow rate and bend angle on bend erosion wear. The results show that the faster the fluid velocity is, the more obvious the erosion of particles on the bend is, and the velocity is positively correlated with the erosion rate. At the same flow rate, with the increase of particle size, the erosion rate gradually decreases and finally tends to be stable. Elbows with different angles are subject to different erosion. Elbows with appropriate angles should be designed according to the differences in the field operating environment. The simulation results show that the flow rate of natural gas and the diameter of solid particles are the main factors affecting the erosion rate of pipeline elbow, and the erosion prevention and control measures are proposed according to the simulation results.

参考文献/References:

[1] 李永梅. YB区块天然气管线弯头冲蚀模拟及预防[D].西安:西安石油大学,2021.[2] 游赟,李梦莹.基于FLUENT天然气集输管道直角弯管磨损分析[J].煤气与热力,2021,41(4):75-81,102.[3] 胡金文,马贵阳,王红莹,等.高含硫天然气管道泄漏扩散数值模拟[J].节能技术,2011,29(5):418-423.[4] 刘鸣洋. A modified CFD-based sand erosion prediction pro?edure for pipe elbows and similarity analyses on erosion tests[D].天津:天津大学,2017.[5] 王明吉,姚岱男,张勇,等.基于Fluent的油气管道内部泄漏特性分析[J].化工自动化及仪表,2020,47(5):420-424.[6] SUN X Y, CAO X W.Impact of inter?article collision on elbowerosion based on DSMC-CFD method[J].Petroleum Science,2021,18(3):909-922.[7] WEI Z Q,HUANG X F, LU L J,et al. Strategy of rainwater discharge in combined sewage intercepting manhole based on water quality control[J]. Water, 2019, 11(5):898.[8] 王岩.液体颗粒对天然气管道冲蚀的数值模拟[D].抚顺:辽宁石油化工大学,2019.[9] 夏明磊,罗懿.基于FLUENT的混输海管沉积物腐蚀模拟分析[J].广东化工,2022,49(10):185-188,201.[10] 鲁剑啸.基于Ansys Fluent及正交试验的90°弯管冲蚀影响因素分析[J].当代化工,2019,48(9):2102-2106.[11] 滕向松,孟军政,尹仲伟,等.基于FLUENT的输油管道弯头冲蚀模拟分析与防控措施研究[J].石油化工腐蚀与防护,2021,38(3):19-22.[12] 陈泽,陈国清,杨先辉,等.基于Fluent有限元模拟的连续弯管冲蚀特性研究[J].机械工程师,2021(10):60-62,65.[13] 杨永亮.石油天然气管道腐蚀及其防护措施研究[J].当代化工研究,2021(2):90-91.[14] 路鑫,常宗瑜,赵林,等.大口径海洋输气管道弯管处的固体颗粒冲蚀效果分析[J].机械设计,2019,36(S1):34-39.[15] 王佳琪,何世权,李力,等.基于DPM模型V型球阀固液两相流冲蚀研究[J].流体机械,2021,49(11):81-85.[16] 莫丽,王玖,郭振兴,等.椭圆截面异型管道弯头冲蚀机理研究[J].石油机械,2021,49(10):129-136.

相似文献/References:

[1]赵 波,付彦宏,彭立山,等.钢板制弯头焊缝气保焊自动横焊机设计[J].焊管,2011,34(7):44.
[2]王增辉,彭立山,郭宗堂,等.国内外1.5D弯头壁厚设计对比[J].焊管,2011,34(8):56.
[3]李为卫,王晓江.天然气输送钢管标准仍需考虑的几个技术问题[J].焊管,2012,35(12):57.[doi:001-3938(2012)12-0057-05]
 LI Weiwei,WANG Xiaojiang.Several Technical Problems of Natural Gas Pipeline Steel Pipe’s Standard[J].,2012,35(1):57.[doi:001-3938(2012)12-0057-05]
[4]牛 辉,张 君,赵红波,等.X70抗大变形钢管研发及批量生产[J].焊管,2013,36(6):26.[doi:1001-3938(2013)06-0026-06]
 NIU Hui,ZHANG Jun,ZHAO Hongbo,et al.Research & Development and Mass Production of X70 Grade Welded Pipe with Large Deformation Resistance[J].,2013,36(1):26.[doi:1001-3938(2013)06-0026-06]
[5]孙海生.焊接弯头下游腐蚀穿孔有限元分析[J].焊管,2014,37(1):65.[doi:1001-3938(2014)01-0065-03]
 SUN Haisheng.Downstream Corrosion Perforation Finite Element Analysis of Welded Elbow[J].,2014,37(1):65.[doi:1001-3938(2014)01-0065-03]
[6]张 鹏,李晓红.内压和弯矩联合作用下理想弯头的有限元分析[J].焊管,2014,37(2):14.[doi:1001-3938(2014)02-0014-04]
 ZHANG Peng,LI Xiaohong.Finite Element Analysis on Ideal Elbow Under Combined Effect of Inner Pressure and Bending Moment[J].,2014,37(1):14.[doi:1001-3938(2014)02-0014-04]
[7]李 根,李相蓉.在役天然气管道缺陷安全评定及有限元分析[J].焊管,2014,37(8):16.[doi:1001-3938(2014)08-0016-04]
 LI Gen,LI Xiangrong.Defects Assessment for Gas Pipeline in Service and Finite Element Analysis[J].,2014,37(1):16.[doi:1001-3938(2014)08-0016-04]
[8]李 根,李相蓉.凹陷缺陷对输气管道强度的影响[J].焊管,2015,38(10 ):53.[doi:1001-3938(2015)10-0053-04]
 LI Gen,LI Xiangrong.Effects of Sunken Defects on the Strength of Gas Pipeline[J].,2015,38(1):53.[doi:1001-3938(2015)10-0053-04]
[9]王 珂,等.在役输气管道分层缺陷无损检测及安全评价[J].焊管,2016,39(7):65.[doi:10.19291/j.cnki.1001-3938.2016.07.015]
 WANG Ke,LUO Jinheng,et al.Non-destructive Inspection and Safety Evaluation for Lamination Defect of Gas Transportation Pipeline on Service[J].,2016,39(1):65.[doi:10.19291/j.cnki.1001-3938.2016.07.015]
[10]蒋浩泽,等.天然气管道用埋弧焊钢管焊缝无损检测对标分析[J].焊管,2018,41(10):55.[doi:10.19291/j.cnki.1001-3938.2018.10.012]
 JIANG Haoze,LI Weiwei,XIE Ping,et al.Standard Comparison of Non-destructive Testing for Submerged arc Welding Pipe of Natural Gas Pipeline[J].,2018,41(1):55.[doi:10.19291/j.cnki.1001-3938.2018.10.012]

备注/Memo

备注/Memo:
收稿日期:2022-07-28基金项目: 国家自然科学基金青年基金项目“喷雾热解过程中微纳多孔结构氧化铈颗粒形成机理及模拟研究”(项目编号51904069)。作者简介:吕超(1985—),男,副教授,工学博士,博士后,东北大学硕士生导师,主编出版专著2部,发表SCI/EI论文28篇。
更新日期/Last Update: 2023-02-14