[1]吴昱达,郑 莉,陈新汉,等.基于CEL方法的管道内检测器过弯机理分析[J].焊管,2022,45(10):18-23,29.[doi:10.19291/j.cnki.1001-3938.2022.10.004]
 WU Yuda,ZHENG Li,CHEN Xinhan,et al.Analysis of Over-bending Mechanism of Pipeline Inner Detector based on CEL Method[J].,2022,45(10):18-23,29.[doi:10.19291/j.cnki.1001-3938.2022.10.004]
点击复制

基于CEL方法的管道内检测器过弯机理分析()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
45
期数:
2022年第10期
页码:
18-23,29
栏目:
试验与研究
出版日期:
2022-10-28

文章信息/Info

Title:
Analysis of Over-bending Mechanism of Pipeline Inner Detector based on CEL Method
文章编号:
10.19291/j.cnki.1001-3938.2022.10.004
作者:
吴昱达郑 莉陈新汉刘 洋柴 泽李涛屹
1. 北京华航无线电测量研究所, 北京 100013; 2. 中国石油大学 机械与储运工程学院, 北京 100100
Author(s):
WU Yuda ZHENG Li CHEN Xinhan LIU Yang CHAI Ze LI Taoyi
1. Beijing Huahang Institute of Radio Measurement, Beijing 100013, China;2. College of Mechanical and Traansportation Engineering, China University of Petroleum, Beijing 100100, China
关键词:
管道内检测器数值模拟CEL方法流固耦合Mooney-RivLin模型
Keywords:
pipeline inner detector numerical simulation coupled Eular-Lagrangian(CEL) fluid-solid coupling Mooney-Rivlin model
分类号:
TE973.6
DOI:
10.19291/j.cnki.1001-3938.2022.10.004
文献标志码:
A
摘要:
针对管道内检测器在管道内运行的通过性问题,采用耦合欧拉-拉格朗日(CEL)方法,建立了管道内检测器运行的流-固耦合有限元模型,同时采用Mooney-RivLin模型描述皮碗超弹性、非线性行为。研究了双舱段管道内检测器通过弯管道时的复杂力学行为,探索了管道内检测器通过性的动力学响应规律。分析了双节管道内检测器在曲率半径1.5D及3D弯管内的运行情况,同时分析了双舱段管道检测器在管道运行过程中,万向节长度对检测器管内运行角度的影响规律。结果表明:随着万向节设计长度的增加,检测器的轴线夹角最大值呈现先增大后减小的趋势;且在运行过程中,检测器通过的管道曲率越小,万向节角度波动峰值越大,波动的变化率越大。因此,合理设计万向节长度,对检测器运行状态以及检测设备的稳定性具有重要的影响。
Abstract:
In order to study the passability of the detector running in the pipeline, the coupled Euler-Lagrange (CEL) method is used to establish the fluid-solid coupled finite element model of the detector running in the pipeline, and the Mooney-Rivlin model is used to describe the hyperelastic and nonlinear behavior of the sealing cups. The complex mechanical behavior of the pipeline detector with double cabins is studied, and the resulting dynamic response regularity is also explored when passing through the curved pipeline. The operation of the detector in the double cabins pipe in 1.5D and 3D curved pipe is analyzed, and the influence rule of the length of universal joint on the Angle change of the detector in the pipe operation is revealed. The results show that the maximum axial intersection angle of the detector increases first and then decreases with the increase of the design length of the universal joint. In the process of operation, the smaller the curvature of the pipe passed by the detector, the larger the peak value of the angular universal joint angle fluctuation and the higher the change rate of the fluctuation. Reasonable design of the length of the universal joint has an important influence on the running state of the detector and the stability of the detection equipment.

参考文献/References:

[1] ZHANG H,ZHANG S,LIU S,et al. Chatter vibration phenomenon of pipeline inspection gauges(PIGs)in natural gas pipeline[J]. Journal of Natural Gas Science and Engineering,2015(27):1129-1140.[2] DURALI M,FAZELI A,NABI A. Investigation of dynamics and vibration of PIG in oil and gas pipelines[C]//ASME International Mechanical Engineering Congress and Exposition. Washington:ASME,2007(43301):2015-2024.[3] ZHANG H,ZHANG S,LIU S,et al. Collisional vibration of PIGs (pipeline inspection gauges) passing through girth welds in pipelines[J]. Journal of Natural Gas Science and Engineering,2017(37):15-28.[4] 慕东. 管道清洁机器人通过性研究[D]. 兰州:兰州理工大学,2016.[5] ZHU X,WANG D,YEUNG H,et al. Comparison of linear and nonlinear simulations of bidirectional pig contact forces in gas pipelines[J]. Journal of Natural Gas Science and Engineering,2015(27):151-157.[6] 刘保余. 输气管道内检测器设计及理论研究[D]. 北京:中国石油大学,2010.[7] 戴波,杨光,张啸,等. 压差驱动管道内检测器速度控制数学模型建立[J]. 计算机与应用化学,2016,33(4):435-440.[8] MIRSHAMSI M,RAFEEYAN M. Dynamic analysis and simulation of long pig in gas pipeline[J]. Journal of Natural Gas Science and Engineering,2015(23):294-303.[9] 戴波,徐光. 基于泄流孔的管道内检测器运动状态分析[J]. 计算机与应用化学,2013(8):859-863.[10] MITTAL V,CHAKRABORTY T,MATSAGAR V. Dynamic analysis of liquid storage tank under blast using coupled Euler-Lagrange formulation[J]. Thin-walled Structures,2014(84):91-111.[11] AHMADZADEH M,SARANJAM B,FARD A H,et al. Numerical simulation of sphere water entry problem using Eulerian-Lagrangian method[J]. Applied Mathematical Modelling,2014,38(5):1673-1684.[12] 李琪,王煜凯. 基于CEL方法的平板入水有限元分析[J]. 技术与市场,2015(10):96.[13] SILLEM A. Feasibility study of a tire hydroplaning simulation in a finite element code using a coupled Eulerian-Lagrangian method[EB/OL]. [2022-03-01]. https://www.researchgate.net/publication/27342037_Feasibility_study_of_a_tire_hydroplaning_simulation_in_a_finite_element_code_using_a_coupled_Eulerian-Lagrangian_method.[14] AKSENOV D V,SHCHERBAKOV V I,LESHCHENKO V V. Selection of structural parameters of an inspection pig for arterial oil and gas pipelines from conditions of dynamics[J]. Chemical and Petroleum Engineering,2013,49(3):265-269.[15] 杨理践,赵洋,高松巍. 输气管道内检测器压力-速度模型及速度调整策略[J]. 仪器仪表学报,2012,33(11):2407-2413.[16] 杨文凯. 基于多传感器信息融合的管道机器人管内通过性研究[D]. 青岛:中国石油大学(华东), 2011.[17] DENG T,GONG J,LI X P,et al. A Dynamic simulation study of overpressure for pigging process[C]//International Pipeline Conference. [S.l.]:American Society of Mechanical Engineers,2012(45127):183-187.

相似文献/References:

[1]宋立新,王 勇,韩 涛,等.管道在役焊接接头残余应力的研究[J].焊管,2008,31(2):31.[doi:1001-3938(2008)02-0031-04]
 SONG Li-xin,WANG Yong,HAN Tao,et al.Study on Residual Stress of In-service Welding onto Pipeline Steel[J].,2008,31(10):31.[doi:1001-3938(2008)02-0031-04]
[2]王金飞,李殿杰,韩宝云.数值模拟技术在焊管成型工艺研究中的应用进展[J].焊管,2008,31(3):42.[doi:1001-3938(2008)03-0042-03]
 WANG Jin-fei,LI Dian-jie,HAN Bao-yun.Application Progress of Numerical Simulation in the Research of Welded Pipe Forming Process[J].,2008,31(10):42.[doi:1001-3938(2008)03-0042-03]
[3]杨天冰,郭瑞杰,白世武,等.X70级管道环焊缝接头残余应力数值模拟[J].焊管,2008,31(4):21.[doi:1001-3938(2008)04-0021-07]
 YANG Tian-bing,GUO Rui-jie,BAI Shi-wu,et al.Residual Stress Simulation of X70 Pipeline Girth Welding Joint[J].,2008,31(10):21.[doi:1001-3938(2008)04-0021-07]
[4]张 涵,姚舜鹏,刘克永.基于ANSYS的直缝埋弧焊管焊接过程数值模拟[J].焊管,2008,31(6):35.[doi:1001-3938(2008)06-0035-04]
 ZHANG Han,YAO Shun peng,LIU Ke-yong.Numerical Simulation of Longitudinal Submerged Arc Welded Pipe During Welding Course Basic on ANSYS[J].,2008,31(10):35.[doi:1001-3938(2008)06-0035-04]
[5]张 喆,周月明,白云峰,等.HFW中频热处理线圈结构对加热效果的影响[J].焊管,2009,32(1):41.[doi:1001-3938(2009)01-0041-05]
 ZHANG Zhe,ZHOU Yue-ming,BAI Yun-feng,et al.Loop Structure of HFW Intermediate Frequency Heating Treatment Effect to Heating[J].,2009,32(10):41.[doi:1001-3938(2009)01-0041-05]
[6]李又绿,姚安林,赵师平,等.爆炸荷载对埋地输气管道的动力响应和极限载荷分析[J].焊管,2009,32(11):63.[doi:1001-3938(2009)11-0063-07]
 LI You-lü,YAO An-lin,ZHAO Shi-ping,et al.Analysis on Dynamic Response and Extreme Loads of Buried Gas Pipeline Under Blast Loading[J].,2009,32(10):63.[doi:1001-3938(2009)11-0063-07]
[7]王中辉,李冬雪.焊接数值模拟技术的发展现状[J].焊管,2010,33(6):28.[doi:1001-3938(2010)06-0028-04]
 WANG Zhong-hui,LI Dong-xue.Development Status of Welding Numerical Simulation Technology[J].,2010,33(10):28.[doi:1001-3938(2010)06-0028-04]
[8]边 城,李翠艳 编译.高强度UOE钢管成型数值模拟分析[J].焊管,2010,33(7):65.[doi:1001-3938(2010)07-0065-07]
 Edited and Translated by BIAN Cheng,LI Cui-yan.Numerical Simulation Aanlysis on High Strength UOE Steel Pipes[J].,2010,33(10):65.[doi:1001-3938(2010)07-0065-07]
[9]信红波,董林福,刘岩松,等.基于cosmos simulation的水压试验机结构设计与数值模拟[J].焊管,2011,34(1):34.[doi:1001-3938(2011)01-0034-04]
 XIN Hong-bo,DONG Lin-fu,LIU Yan-song,et al.Structure Design and Numerical Simulation of Hydraulic Press Tester Based on the COSMOS Simulation[J].,2011,34(10):34.[doi:1001-3938(2011)01-0034-04]
[10]李美艳,王勇,宋立新,等.管线钢在役焊接接头残余应力的数值模拟[J].焊管,2011,34(7):18.

备注/Memo

备注/Memo:
收稿日期:2022-03-25
作者简介:吴昱达(1992—),硕士,工程师,主要从事管道内检测器相关研究工作。
更新日期/Last Update: 2022-10-26