[1]刘吼.基于博弈论-集对分析法的海底管道泄漏风险评估[J].焊管,2024,47(3):47-52.[doi:10.19291/j.cnki.1001-3938.2024.03.007]
 LIU Hou.Risk Assessment of Submarine Pipeline Leakage based on Game Theory?et Pair Analysis[J].,2024,47(3):47-52.[doi:10.19291/j.cnki.1001-3938.2024.03.007]
点击复制

基于博弈论-集对分析法的海底管道泄漏风险评估()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
47
期数:
2024年第3期
页码:
47-52
栏目:
应用与开发
出版日期:
2024-03-28

文章信息/Info

Title:
Risk Assessment of Submarine Pipeline Leakage based on Game Theory?et Pair Analysis
文章编号:
10.19291/j.cnki.1001-3938.2024.03.007
作者:
刘吼
(中海石油(中国)有限公司 深圳分公司,深圳 518067)
Author(s):
LIU Hou
(Shenzhen Branch of CNOOC (China) Co., Ltd., Shenzhen 518067, China)
关键词:
海底管道泄漏风险博弈论-集对分析组合赋权
Keywords:
submarine pipeline leakage risk game theory?et pair analysis combination weighting
分类号:
TE88
DOI:
10.19291/j.cnki.1001-3938.2024.03.007
文献标志码:
B
摘要:
为准确评估海底管道运行中存在的泄漏风险,在调研国内外海底管道事故数据库的基础上,建立了海底管道泄漏风险评价指标体系,分别通过G1法和熵权法对各项指标进行主观、客观赋权,利用博弈论协调两种权重之间的关系,最后采用集对分析法对指标进行处理,得到不同管段的泄漏风险等级。结果表明,博弈论组合赋权的权重结果更合理,组合权重大于0.06的指标从大到小依次为渔船密度、航运船密度、台风、海水腐蚀、H2S腐蚀、地震和管道埋深;管段12和管段20的风险等级较高为IV级,且通过集对势分析,得到管段9、13、15、20处在同势区,说明风险具有向更高一级发展的趋势。可以通过采取限制船舶航速、禁止在管道保护区停泊、设置天气预警装置、加强巡线、设置警告牌等措施降低管道泄漏风险。研究结果对于海底管道的安全运行管理具有指导意义。
Abstract:
In order to accurately assess the leakage risk existing in the operation of submarine pipelines, an index system of submarine pipeline leakage risk assessment was established on the basis of investigation of submarine pipeline accident databases at home and abroad. G1 method and entropy weight method were used to assign subjective and objective weights to each index, and the relationship between the two weights was coordinated by game theory. Finally, set pair analysis method was used to process the indicators. The leakage risk levels of different pipe segments are obtained. The results show that the weight of the combination of game theory is more reasonable, and the index with the combination weight greater than 0.06 is the density of fishing vessels, the density of shipping vessels, typhoon, seawater corrosion, H2S corrosion, earthquake and pipeline buried depth in order from the largest to the smallest. The higher risk level of pipe segments 12 and 20 is level IV, and through the set pair potential analysis, it is found that pipe segments 9, 13, 15 and 20 are in the same potential area, indicating that the risk has a tendency to develop to a higher level. The risk of pipeline leakage can be reduced by limiting ship speed, prohibiting berthing in pipeline protection area, setting up weather warning device, strengthening patrol line, setting up warning sign and so on. The research results are expected to provide guidance for improving the operation and management level of submarine pipelines.

相似文献/References:

[1]蔡彬,郑福恩,李记科,等.海底油气管道延性断裂止裂CVN冲击功的计算[J].焊管,2011,34(12):39.[doi:1001-3938(2011)12-0039-04]
 CAI Bin,LI Ji-ke,LI Yun-long.CVN Impact Values Calculation for the Arrest of Ductile Fracture for Subsea Oil and Gas Pipeline[J].,2011,34(3):39.[doi:1001-3938(2011)12-0039-04]
[2]杜 伟,张京兵,魏亚秋,等.大壁厚海底管道用X65钢管性能均匀性研究[J].焊管,2013,36(2):32.[doi:1001-3938(2013)02-0032-03]
 DU Wei,ZHANG Jingbing,WEI Yaqiu,et al.Research on Inhomogeneity of X65 Steel Pipes Used for Submarine Pipeline with Heavy Wall Thickness[J].,2013,36(3):32.[doi:1001-3938(2013)02-0032-03]
[3]王海涛,池 强,李鹤林,等.海底油气输送管道材料开发和应用现状[J].焊管,2014,37(8):25.[doi:1001-3938(2014)08-0025-05]
 WANG Haitao,CHI Qiang,LI Helin,et al.Development and Application Status of Submarine Pipeline Materials for Oil and Gas Transportation[J].,2014,37(3):25.[doi:1001-3938(2014)08-0025-05]
[4]张海波,彭立山,赵志伟,等.内部冷却系统在海底管线用厚壁弯管制造中的应用[J].焊管,2014,37(9):60.[doi:1001-3938(2014)09-0060-04]
 ZHANG Haibo,PENG Lishan,ZHAO Zhiwei,et al.Application of Internal Cooling System in Manufacturing Heavy Thickness Bends for Subsea Pipeline[J].,2014,37(3):60.[doi:1001-3938(2014)09-0060-04]
[5]李全华,张 勇,曲兴刚,等.某海底天然气管线的内腐蚀直接评价[J].焊管,2016,39(8):58.[doi:10.19291/j.cnki.1001-3938.2016.08.014]
 LI Quanhua,ZHANG Yong,QU Xinggang,et al.Internal Corrosion Direct Assessment Method(ICDA) of Some Submarine Gas Pipeline[J].,2016,39(3):58.[doi:10.19291/j.cnki.1001-3938.2016.08.014]
[6]牛爱军,等.海底管线用管线钢及钢管的研发与应用[J].焊管,2019,42(6):1.[doi:10.19291/j.cnki.1001-3938.2019.6.001]
 NIU Aijun,BI Zongyue,et al.Development and Application of Pipeline Steel and Steel Pipe for Offshore Pipeline in China[J].,2019,42(3):1.[doi:10.19291/j.cnki.1001-3938.2019.6.001]
[7]胡松林.焊管在海底管道中的应用探讨[J].焊管,2019,42(11):1.[doi:10.19291/j.cnki.1001-3938.2019.11.001]
 HU Songlin.Discussion on the Application of Welded Pipe in Offshore Pipeline[J].,2019,42(3):1.[doi:10.19291/j.cnki.1001-3938.2019.11.001]
[8]史小东,谢建桥,张辉宇.海底管道典型缺陷磁记忆检测试验研究[J].焊管,2020,43(7):8.[doi:10.19291/j.cnki.1001-3938.2020.07.002]
 SHI Xiaodong,XIE Jianqiao,ZHANG Huiyu.Submarine Pipeline Typical Defect Detection Study Based on Magnetic Memory Testing[J].,2020,43(3):8.[doi:10.19291/j.cnki.1001-3938.2020.07.002]
[9]高 帅.基于KPCA-GA-ELM的海底管道外腐蚀速率预测技术[J].焊管,2021,44(11):23.[doi:10.19291/j.cnki.1001-3938.2021.11.004]
 GAO Shuai.Prediction of Corrosion Rate of Submarine Pipeline based on KPCA-GA-ELM[J].,2021,44(3):23.[doi:10.19291/j.cnki.1001-3938.2021.11.004]
[10]张天江,陈 亮,吴 员,等.基于API 1104标准的海底管道对接环焊缝超声波检验程序验证[J].焊管,2021,44(12):58.[doi:10.19291/j.cnki.1001-3938.2021.12.011]
 ZHANG Tianjiang,CHEN Liang,WU Yuan,et al.Verification of Ultrasonic Inspection Program for Butt Girth Welds Based on API 1104 Standard[J].,2021,44(3):58.[doi:10.19291/j.cnki.1001-3938.2021.12.011]

备注/Memo

备注/Memo:
收稿日期:2023-08-03作者简介:刘吼(1989—),男,湖南益阳人,本科,工程师,现主要从事海洋石油生产工艺管理、长输管道安全管理工作。
更新日期/Last Update: 2024-03-28