[1]李乔楚,庄波,李联合.岩溶塌陷区埋地管道的挠度和应力分析[J].焊管,2023,46(4):23-30.[doi:10.19291/j.cnki.1001-3938.2023.04.004]
 LI Qiaochu,ZHUANG Bo,LI Lianhe.Deflection and Stress Analysis of Buried Pipeline in Karst Collapse Area[J].,2023,46(4):23-30.[doi:10.19291/j.cnki.1001-3938.2023.04.004]
点击复制

岩溶塌陷区埋地管道的挠度和应力分析(/HTML)
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
46
期数:
2023年第4期
页码:
23-30
栏目:
试验与研究
出版日期:
2023-04-28

文章信息/Info

Title:
Deflection and Stress Analysis of Buried Pipeline in Karst Collapse Area
文章编号:
10.19291/j.cnki.1001-3938.2023.04.004
作者:
李乔楚庄波李联合
西南石油大学,成都 610500
Author(s):
LI Qiaochu ZHUANG Bo LI Lianhe
Southwest Petroleum University, Chengdu 610500, China
关键词:
岩溶塌陷埋地管道Winkler 弹性地基梁挠度应力分析
Keywords:
karst collapse buried pipelines Winkler elastic foundation beam deflection stress analysis
分类号:
TG113.25
DOI:
10.19291/j.cnki.1001-3938.2023.04.004
文献标志码:
A
摘要:
为了弥补采用弹性地基梁模型模拟塌陷区埋地管道与实际不符合的情况,兼顾Winkler弹性地基梁和弹性基础上的连续梁建立了岩溶塌陷区埋地管道的力学分析模型,并结合塌陷影响区与非塌陷影响区间的变形协调性,通过求解管轴挠曲线微分方程,得出了岩溶塌陷区埋地管道的挠度和应力的综合计算方法。通过与基于ABAQUS有限元模拟的仿真结果进行对比分析,表明该方法能够在满足精度要求的同时简化岩溶区管道工程的力学分析过程,可用于岩溶区埋地管道的工程实践。
Abstract:
In order to compensate for the fact that the elastic foundation beam model is used to simulate the buried pipeline in the collapsed area, a mechanical analysis model of the buried pipeline in the karst collapse area is established on the basis of the Winkler elastic foundation beam and the continuous beam on the elastic foundation.Combining the deformation coordination between the collapse affected area and the non?ollapse affected area, the differential equation of the pipe axial deflection curve is solved. A comprehensive calculation system for the deflection and stress of buried pipelines in karst collapse areas is obtained. By comparing and analyzing the simulation results based on ABAQUS finite element simulation, the results show that the method can meet the accuracy requirements while simplifying the mechanical analysis process of pipeline engineering in karst areas, and can be used in the engineering practice of buried pipelines in karst areas.

参考文献/References:

[1] LI Q C,HE S.Research on effect factors of mechanical response of cross-fault buried gas pipeline based on fluid-structure interaction[J].Journal of Pressure Vessel Technology,2021,143(6):061402.[2] 高庆华.中国自然灾害与全球变化[M].北京:气象出版社, 2003.[3] 贺可强,王滨,郭璐,等.中国北方与南方岩溶塌陷对比研究[J].河北地质大学学报,2017,40(1):57-64.[4] WINKLER E.Die lehre von der elastizitat and festigkeit(The Theory of Elasticity and Stiffness)[M].Prague:Dominicus,1867.[5] 高田至郎.土沉陷时聚氯乙烯管道力学性能的实验研究[M]//候忠良.地下管线抗震.北京:学术书刊出版社,1990: 204-214.[6] 高惠瑛,冯启民.场地沉陷埋地管道反应分析方法[J].地震工程与工程振动, 1997(1): 69-76.[7] LUO Y,PENG S S,CHEN H J.Protection of pipelines affected by surface subsidence[J].TRANSACTIONS,1998(302):98-103.[8] 王小龙,姚安林.埋地钢管局部悬空的挠度和内力分析[J]. 工程力学,2008,25(8):218-222.[9] 王小龙,姚安林,沈小伟.埋地油气管道局部悬空的强度和稳定性验算[J].油气田地面工程,2008,27(1):21-24.[10] 陈阿锋,余绍锋.地基沉降引起柔性管道的内力和变形[J]. 山西建筑,2009,35(6):1-2.[11] 王晓霖,帅健,张建强.开采沉陷区埋地管道力学反应分析[J].岩土力学,2011,32(11):3373-3378.[12] KOURETZIS G P,KARAMITROS D K,SLOAN S W. Analysis of buried pipelines subjected to ground surface settlement and heave[J].Canadian Geotechnical Journal, 2015,52(8):1058-1071.[13] GREGORY C,SARVANIS,SPYROS A.Analytical model for the strain analysis of continuous buried pipelines in geohazard areas[J].Engineering Structures,2017(152):57-69.[14] 王联伟.几种在役管道典型地质灾害评价方法研究[D].北京:北京科技大学,2015.[15] 孙训方,方孝淑,关来泰.材料力学[M].北京:高等教育出版社,2001.[16] WANG R L,YEH Y H.A refined seismic analysis and sesign of buried pipeline for fault movement[J].Eathquake Engineering&Structural Dynamics,1985,13(1):75-96.[17] 尚尔京.川气东送工程中地层塌陷及土壤液化区段管道安全评估[D].北京:中国石油大学,2009.[18] 李乔楚,何沙.基于单元生死技术的岩溶区域PE管道应力分析[J].应用力学学报,2021,38(4):1512-1522.[19] 王威翔,姚安林,徐涛龙,等.车辆载荷下 PE 燃气管道的虚拟仿真技术及其动力响应分析[J].工程力学,2020,37(S1):333-339.

相似文献/References:

[1]冉龙飞,高文浩,吴 栋,等.埋地管道极限悬空长度计算[J].焊管,2014,37(9):56.[doi:1001-3938(2014)09-0056-04]
 RAN Longfei,GAO Wenhao,WU Dong,et al.Extreme Impending Length Calculation of Buried Pipeline[J].,2014,37(4):56.[doi:1001-3938(2014)09-0056-04]
[2]夏连宁,张 亮,李 琦,等.大直径输水钢管承插搭接焊接口设计与应用[J].焊管,2019,42(5):60.[doi:10.19291/j.cnki.1001-3938.2019.5.010]
 XIA Lianning,ZHANG Liang,LI Qi,et al.Design and Application of Socket Lap Welding Joint for Large Diameter Water Transmission Steel Pipe[J].,2019,42(4):60.[doi:10.19291/j.cnki.1001-3938.2019.5.010]
[3]毕宗岳,等.大直径埋地管道应力应变有限元分析与计算[J].焊管,2020,43(3):8.[doi:10.19291/j.cnki.1001-3938.2020.03.002]
 BI Zongyue,CHAO Lining,et al.Stress-strain Finite Element Analysis and Calculation of Large Diameter Buried Pipeline[J].,2020,43(4):8.[doi:10.19291/j.cnki.1001-3938.2020.03.002]
[4]李 明,李秉军,何永志,等.某埋地碳钢管道腐蚀失效分析[J].焊管,2021,44(8):30.[doi:10.19291/j.cnki.1001-3938.2021.08.006]
 LI Ming,LI Bingjun,HE Yongzhi,et al.Corrosion Failure Analysis of a Buried Carbon Steel Pipeline[J].,2021,44(4):30.[doi:10.19291/j.cnki.1001-3938.2021.08.006]
[5]李乔楚,陈军华.基于WSR的岩溶区域管道破坏特征与风险管控措施[J].焊管,2022,45(2):32.[doi:10.19291/j.cnki.1001-3938.2022.02.005]
 LI Qiaochu,CHEN Junhua.Failure Characteristics and Risk Control Measures of Pipeline in Karst Area based on WSR[J].,2022,45(4):32.[doi:10.19291/j.cnki.1001-3938.2022.02.005]
[6]李巧珍,程红斐,候彦明,等.含划痕缺陷埋地管道冲击作用下的动力响应行为研究[J].焊管,2022,45(6):1.[doi:10.19291/j.cnki.1001-3938.2022.06.001]
 LI Qiaozhen,CHENG Hongfei,HOU Yanming,et al.Study on Dynamic Response Behavior of Buried Pipeline with Scratch Defect Subjected to Impact Loading[J].,2022,45(4):1.[doi:10.19291/j.cnki.1001-3938.2022.06.001]

备注/Memo

备注/Memo:
收稿日期:2022-07-24
基金项目: 国家社会科学基金西部项目“‘双碳’目标下我国城市群能源系统碳达峰预测及差异化减排路径研究”(项目编号22XGL019);四川省社会科学研究“十三五”规划基地项目“四川省能源系统低碳转型的驱动因素及政策研究”(项目编号20EZD039)。
作者简介:李乔楚(1995—),男,汉族,博士研究生,2020年毕业于西南石油大学石油与天然气工程专业,现主要从事石油工程管理方向的研究工作。
更新日期/Last Update: 2023-04-26