[1]黄健康,李 奇,于晓全,等.高强管线钢焊接残余应力研究现状[J].焊管,2022,45(4):1-7.[doi:10.19291/j.cnki.1001-3938.2022.04.001]
 HUANG Jiankang,LI Qi,YU Xiaoquan,et al.Research Status of Welding Residual Stress of High Strength Pipeline Steel[J].,2022,45(4):1-7.[doi:10.19291/j.cnki.1001-3938.2022.04.001]
点击复制

高强管线钢焊接残余应力研究现状()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
45
期数:
2022年第4期
页码:
1-7
栏目:
综述
出版日期:
2022-04-28

文章信息/Info

Title:
Research Status of Welding Residual Stress of High Strength Pipeline Steel
文章编号:
10.19291/j.cnki.1001-3938.2022.04.001
作者:
黄健康李 奇于晓全刘光银
兰州理工大学 材料科学与工程学院,兰州 730050
Author(s):
HUANG Jiankang LI Qi YU Xiaoquan LIU Guangyin
School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
关键词:
高强管线钢焊接残余应力X射线衍射残余应力分布
Keywords:
high strength pipeline steelwelding residual stressX-ray diffractionresidual stress distribution
分类号:
TG404
DOI:
10.19291/j.cnki.1001-3938.2022.04.001
文献标志码:
A
摘要:
在高强管线钢的工程应用过程中,较高的焊接残余应力会导致焊缝产生应力腐蚀和疲劳裂纹以至失效。简要介绍了高强度管线钢的焊接方法,对比了传统电弧焊与先进焊接方法的工艺特点,以及不同焊接方法的残余应力分布,概述了通过无损检测手段进行残余应力分析的相关研究结果,并通过数值模拟进行了焊接残余应力的对比和分析。指出,通过不同的数值模型及有限元分析等手段,可快速获得不同焊接方法的接头残余应力分布,以便于对焊接工艺进行调整。
Abstract:
In the process of engineering application of high strength pipeline steel, high welding residual stress will lead to stress corrosion and fatigue crack and even failure. The welding methods of high strength pipeline steel are briefly introduced. The process characteristics of traditional arc welding and advanced welding methods are compared, as well as the residual stress distribution of different welding methods. The research results of residual stress analysis by nondestructive testing are summarized, and the comparison and analysis of welding residual stress are carried out by numerical simulation. It is pointed out that the residual stress distribution of different welding methods can be obtained quickly by different numerical models and finite element analysis, so as to adjust the welding process.

参考文献/References:

[1] 张锦刚,王海燕,王茜,等.管线钢高效焊接技术的研究现状及前景分析[J]. 热加工工艺,2018,47(3):18-22.[2] YELBAY H I,CAM I,GUR C H. Non-destructive determination of residual stress state in steel weldments by Magnetic barkhausen noise technique[J]. NDT & E International,2010,43(1):29-33.[3] XU G Q,LUO Y,YAO B,et al. Stresses measurement and failure prevention of on-line natural gas transmission pipelines for compressor station on collapsible loess area in northwest China[J]. Engineering Failure Analysis,2021(126):105467.[4] DENG D,KIYOSHIMA S. FEM prediction of welding residual stresses in a SUS304 girth-welded pipe with emphasis on stress distribution near weld start/end location[J]. Computational Materials Science,2011,50(2):612-621.[5] KHAN W N,CHHIBBER R. Effect of filler metal on solidification, microstructure and mechanical properties of dissimilar super duplex/pipeline steel GTA weld[J]. Materials Science and Engineering: A,2021(803):140476.[6] 王学林,董利明,杨玮玮,等. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响[J]. 金属学报,2016, 52(6):649-660.[7] 刘伟,刘利超,康全,等. 焊接方法对X90管线钢焊接接头性能的影响[J]. 材料保护,2017,50(12):33-37.[8] 赵伟,邹勇,夏佃秀,等. X80管线钢焊条电弧焊接头组织与耐蚀性分析[J]. 焊接学报,2016,37(10):51-54,132.[9] 鲁欣豫,李桓,曹军,等. 高强钢X70海管的药芯焊丝气体保护焊工艺[J]. 焊接技术,2009,38(11):27-28.[10] 毕宗岳,金时麟. X80高强度高韧性厚壁管线钢及高速埋弧焊接头性能[J]. 焊接,2008(10):42-46,71.[11] 李冉,施哲,魏金山,等. X80管线钢气体保护焊用焊丝熔敷金属组织与性能研究[J]. 焊接,2006(12):34-38.[12] AYDIN H,NELSON T W. Microstructure and mechanical properties of hard zone in friction stir welded X80 pipeline steel relative to different heat input[J]. Materials Science and Engineering: A,2013(586):313-322.[13] 胡连海,黄坚,李铸国,等. 高功率CO2激光焊接管线钢接头的组织与性能[J]. 中国激光,2009,36(12):3174-3178.[14] 石庭深,朱加雷,焦向东,等. X80管线钢激光-电弧复合焊接工艺[J]. 电焊机,2015,45(5):69-72.[15] YIN L,WANG J,CHEN X,et al. Microstructures and their distribution within HAZ of X80 pipeline steel welded using hybrid laser-MIG welding[J]. Welding in the World,2018,62(4):721-727.[16] 刘维,张玉凤,霍立兴,等. 高频焊管残余应力的测量及三维有限元数值模拟[J]. 焊接学报,2007(1):37-40.[17] CEGLIAS R B,ALVES J M,BOTELHO R A,et al. Residual stress evaluation by X-ray diffraction and hole-drilling in an API 5L X70 steel pipe bent by hot induction[J]. Materials Research,2016(19): 1176-1179.[18] CHEN B Q,HASHEMZADEH M,GUEDES S C. Validation of numerical simulations with X-ray diffraction measurements of residual stress in butt-welded steel plates[J]. Ships and Offshore Structures,2018,13(3): 273-282. [19] PARADOWSKA A M,PRICE J W H,FINLAYSON T R,et al. Comparison of neutron diffraction measurements of residual stress of steel butt welds with current fitness-for-purpose assessments[EB/OL]. (2008-12-01)[2021-10-28]. https://www.researchgate.net/profile/Anna-Paradowska-2/publication267644679_Comparison_of_Netron_Diffraction_ Residual_ Stress_ Measurements_ of_ Steel_ Welded_Repairs_ With_ Current_ Fitness- for- Purpose_Assessments/links/547d9cd50cf2cfe203c21f11/Comparison-of-Neutron-Diffraction-Residual-Stress-Measurements-of-Steel- Welded- Repairs- With- Current- Fitness- for-Purpose-Assessments.[20] LI H G,LEE T L,ZHENG W,et al. Characterization of residual stress in laser melting deposited CoCrFeMnNi high entropy alloy by neutron diffraction[J]. Materials Letters,2019(263):127247.[21] GOU R,ZHANG Y,XU X,et al. Residual stress measurement of new and in-service X70 pipelines by X-ray diffraction method[J]. NDT& E International,2011,44(5): 387-393.[22] MORAES C A P,CHLUDZINSKI M,NUNES R M,et al. Residual stress evaluation in API 5L X65 girth welded pipes joined by friction welding and gas tungsten arc welding[J]. Journal of Materials Research and Technology,2019,8(1): 988-995.[23] ?譧VILA J A,CONDE F F,PINTO H C,et al. Microstructural and residuals stress analysis of friction stir welding of X80 pipeline steel plates using magnetic Barkhausen noise[J]. Journal of Nondestructive Evaluation,2019,38(4): 1-9.[24] 于福松,薛屺,秦曾,等. X80管线钢焊接接头残余应力的研究[J]. 热加工工艺,2013,42(21):28-31.[25] AMILTON D,SOUZA L D,FONSECA M C. Characterization of mechanical properties and residual stress in API 5L X80 steel welded joints[J]. Journal of Materials Engineering and Performance,2018,27(1): 124-137.[26] 李晓东,孙晓红,孟立春. 焊接工艺对SUS301L不锈钢残余应力的影响[J]. 电焊机,2018,48(3):281-284.[27] 石庭深,朱加雷,焦向东,等. X80管线钢激光电弧复合焊接数值分析[J]. 电焊机,2016,46(2):78-81.[28] OBEID O,ALFANO G,BAHAI H,et al. Numerical simulation of thermal and residual stress fields induced by lined pipe welding[J]. Thermal Science and Engineering Progress,2018(5): 1-14.[29] DIXNEIT J,KROMM A,BOIN M,et al. Influence of heat control on residual stresses in low transformation temperature (LTT) large scale welds[J]. Residual Stresses,2016(2):223-228.[30] 白芳,童莉葛,丁红胜,等. X80钢多层焊温度分布对残余应力的影响研究[J]. 工程热物理学报,2019,40(4):931-937.[31] ZHAO W,JIANG W,ZHANG H,et al. 3D finite element analysis and optimization of welding residual stress in the girth joints of X80 steel pipeline[J]. Journal of Manufacturing Processes,2021(66):166-178.[32] 刘成,尹立孟,姚宗湘,等. 焊缝余高对复合型坡口X80管线钢多层多道焊接残余应力的影响[J]. 焊接学报,2018,39(12):100-104,133.[33] DENG D,MURAKAWA H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Computational Materials Science,2006,37(3):269-277.[34] 杨明秦,路广平,朱斌燕. 管线钢化学成分及组织对HFW钢管焊缝性能的影响[J]. 钢管,2016,45(3):52-57.[35] 谷绪地. 直缝焊管高频感应焊接残余应力分析[D]. 秦皇岛:燕山大学,2010.[36] HEMMATZADEH M,MOSHAYEDI H,SATTARI-FAR I. Influence of heat input and radius to pipe thickness ratio on the residual stresses in circumferential arc welded pipes of API X46 steels[J]. International Journal of Pressure Vessels and Piping,2017(150): 62-71.[37] 王引真,刘润昌,焦震,等. L485管线钢焊接接头应力状态数值模拟[J]. 热加工工艺,2019,48(19):169-173.[38] 安爱玲,严春妍,祁帅. X80管线钢四丝埋弧焊的数值模拟[J]. 热加工工艺,2016,45(3):220-223.[39] 郭杨柳,马廷霞,刘维洋,等. 基于ABAQUS的X80管线钢焊接残余应力数值模拟[J]. 金属热处理,2018,43(9):218-222.[40] ZHAO W,JIANG W,ZHANG H,et al. 3D finite element analysis and optimization of welding residual stress in the girth joints of X80 steel pipeline[J]. Journal of Manufacturing Processes,2021(66): 166-178.

相似文献/References:

[1]张胜跃,卿 黎,冯秋霞,等.焊接工艺参数对12Cr1MoV异质接头焊接残余应力影响分析[J].焊管,2015,38(11):1.[doi:1001-3938(2015)11-0001-05]
 ZHANG Shengyue,QING Li,FENG Qiuxia,et al.Influence of Welding Process Parameters on 12Cr1MoV Heterogenic Joint Welding Residual Stress[J].,2015,38(4):1.[doi:1001-3938(2015)11-0001-05]
[2]袁雪婷,等.组织特征对高强管线钢焊缝及热影响区韧性的影响[J].焊管,2017,40(11):22.[doi:10.19291/j.cnki.1001-3938.2017.11.005]
 Influence of Microstructure Characteristics on the Toughness of High Strength Pipeline Steel Weld and Heat Affected Zone.[J].,2017,40(4):22.[doi:10.19291/j.cnki.1001-3938.2017.11.005]
[3]李 丽,杨 军,等.成型和焊接对高强管线钢管焊缝及热影响区冲击韧性的影响[J].焊管,2017,40(12):1.[doi:DOI: 10.19291/j.cnki.1001-3938.2017.12.001]
 LI Li,YANG Jun,NIU Hui,et al.Influences of Molding and Welding on Toughness of High Strength PipelineSteel Weld and Heat Affected Zone[J].,2017,40(4):1.[doi:DOI: 10.19291/j.cnki.1001-3938.2017.12.001]
[4]胡美娟,闵希华,罗金恒,等.凸台焊接对HFW焊管性能的影响[J].焊管,2018,41(3):53.[doi:10.19291/j.cnki.1001-3938.2018.03.011]
 HU Meijuan,MIN Xihua,LUO Jinheng,et al.Influence of Boss-backing Welding on HFW Pipe[J].,2018,41(4):53.[doi:10.19291/j.cnki.1001-3938.2018.03.011]
[5]路 浩,邢立伟,邢敬伟.超声波法焊接残余应力测量技术[J].焊管,2019,42(8):50.[doi:10.19291/j.cnki.1001-3938.2019.8.010]
 LU Hao,XING Liwei,XING Jingwei.Ultrasonic Method Measurement of Welding Residual Stress[J].,2019,42(4):50.[doi:10.19291/j.cnki.1001-3938.2019.8.010]
[6]丁稳稳,刘继雄,刘 晶,等.钛合金焊接接头残余应力超声波检测技术研究[J].焊管,2022,45(6):27.[doi:10.19291/j.cnki.1001-3938.2022.06.005]
 DING Wenwen,LIU Jixiong,LIU Jing,et al.Research on Ultrasonic Testing Technology of Residual Stress in Titanium Alloy Welded Joints[J].,2022,45(4):27.[doi:10.19291/j.cnki.1001-3938.2022.06.005]
[7]封壮壮,黄素霞,刘晓立,等.HFW焊管滚槽加工对焊缝开裂的影响[J].焊管,2022,45(12):46.[doi:10.19291/j.cnki.1001-3938.2022.12.008]
 FENG Zhuangzhuang,HUANG Suxia,LIU Xiaoli,et al.Effect of HFW Welded Pipe Rolling Groove Process on Weld Cracking[J].,2022,45(4):46.[doi:10.19291/j.cnki.1001-3938.2022.12.008]
[8]张皓,李新战,韦正鑫,等.焊后热处理改善管道直焊缝残余应力的数值模拟研究[J].焊管,2023,46(9):14.[doi:10.19291/j.cnki.1001-3938.2023.09.003]
 ZHANG Hao,LI Xinzhan,WEI Zhengxin,et al.Numerical Simulation of Post?elding Heat Treatment to Improve Residual Stress in Straight Weld of Pipeline[J].,2023,46(4):14.[doi:10.19291/j.cnki.1001-3938.2023.09.003]
[9]兖文涛.超声冲击技术对U71Mn钢堆焊表面残余应力的调控[J].焊管,2023,46(10):28.[doi:10.19291/j.cnki.1001-3938.2023.10.005]
 YAN Wentao.Control of Residual Stress on the Surface of U71Mn Steel Surfacing by Ultrasonic Impact Technology[J].,2023,46(4):28.[doi:10.19291/j.cnki.1001-3938.2023.10.005]

备注/Memo

备注/Memo:
收稿日期:2021-10-28作者简介:黄健康(1981—),博士,副教授,主要从事焊接过程控制与计算机应用、焊接物理等领域的研究工作。
更新日期/Last Update: 2022-04-25