[1]吝雨晨,师现云,易永根,等.超声振动辅助塑性变形技术的应用与发展[J].焊管,2022,45(6):19-26.[doi:10.19291/j.cnki.1001-3938.2022.06.004]
 LIN Yuchen,SHI Xianyun,YI Yonggen,et al.Application and Development of Ultrasonic Vibration-assisted Plastic Deformation Technology[J].,2022,45(6):19-26.[doi:10.19291/j.cnki.1001-3938.2022.06.004]
点击复制

超声振动辅助塑性变形技术的应用与发展()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
45
期数:
2022年第6期
页码:
19-26
栏目:
综述
出版日期:
2022-06-28

文章信息/Info

Title:
Application and Development of Ultrasonic Vibration-assisted Plastic Deformation Technology
文章编号:
10.19291/j.cnki.1001-3938.2022.06.004
作者:
吝雨晨师现云易永根慕小龙王智勇郝新月王 雷
1. 西安石油大学 材料科学与工程学院,西安 710065; 2. 中国石油长庆油田分公司 第一采油厂,陕西 延安 716000; 3. 西安长庆化工集团有限公司 油田化学剂研究所,西安710021
Author(s):
LIN Yuchen SHI Xianyun YI Yonggen MU Xiaolong WANG Zhiyong HAO Xinyue WANG Lei
1. School of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China; 2. No. 1 Oil Production Plant, CNPC Changqing Oilfield Branch Company, Yan’an 716000, Shaanxi, China;3. Oilfield Chemicals Research Institute, Changqing Chemical Group Co., Ltd., Xi’an 710021, China
关键词:
超声振动塑性变形机理超声辅助
Keywords:
ultrasonic vibration plastic deformation mechanism ultrasound assisted
分类号:
TG306
DOI:
10.19291/j.cnki.1001-3938.2022.06.004
文献标志码:
A
摘要:
超声振动(ultrasonic vibration,UV)作为强塑性变形(severe plastic deformation,SPD)领域广泛应用的方法,可以在材料中以连续弹塑性波的形式有效传输能量,其独特的高频率、大应变率的塑性变形机制是其他SPD方法所很少具备的。介绍了超声振动辅助塑性成形效应及相关机理研究情况,阐述了近年来超声振动辅助塑性变形技术的发展,对塑性变形及焊接行为基本原理研究、超声振动方式对材料的影响研究、各类变形材料及应用等方面进行了系统的论述和分析。最后探讨了超声振动辅助塑性成形技术在应用中存在的问题及发展趋势。
Abstract:
Ultrasonic vibration (UV) is a widely used method in the field of severe plastic deformation (SPD), which can effectively transfer energy in the form of continuous elastic-plastic waves in materials. The unique high frequency, large strain rate plastic deformation mechanism is rarely found in other SPD methods. It introduces the ultrasound vibration-assisted plastic forming effect and related mechanism research work, explains the development of ultrasonic vibration-assisted plastic deformation technology in recent years, and provides a systematic discussion and analysis of the basic principles of plastic deformation and welding behaviour, research on the effect of ultrasonic vibration mode on materials, various types of deformed materials and applications. Finally, the current problems and development trends in ultrasonic vibration-assisted plastic forming technology in application are discussed.

参考文献/References:

[1] HAN Q. Ultrasonic processing of materials[J]. Metallurgical & Materials Transactions B,2015,46(4):1603-1614.[2] LIU Y,SUSLOV S,HAN Q,et al. Microstructure of the pure copper produced by upsetting with ultrasonic vibration[J]. Materials Letters,2012,67(1):52-55.[3] PAN C G,WANG H C,WANG H F,et al. Microstructure and thermal physical parameters of Ni60-Cr3C2 composite coating by laser cladding[J]. Journal of Wuhan University of Technology-Materials Science Edition,2010,25(1):991-995.[4] TAKASHI J, YUKIO K, NOBUYOSHI I, et al. An application of ultrasonic vibration to the deep drawing process[J]. Journal of Materials Processing Technology, 1998(98):406-412.[5] BUNGET C,NGAILE G. Influence of ultrasonic vibration on micro-extrusion[J]. Ultrasonics,2011,51(5):606-616.[6] SHI L,WU C S,LIU H J. Numerical analysis of heat generation and temperature field in reverse dual-rotation friction stir welding[J]. International Journal of Advanced Manufacturing Technology,2014,74(1-4):319-334.[7] DJAVANROODI F,AHMADIAN H,KOOHKAN K,et al. Ultrasonic assisted-ECAP[J]. Ultrasonics,2013,53(6): 1089-1096.[8] EAVES A E,SMITH A W,WATERHOUSE W J,et al. Review of the application of ultrasonic vibrations to deforming metals[J]. Ultrasonics,1975,13(4):162-170.[9] JI R, LIU Y,SUET T,et al. Efficient fabrication of gradient nanostructure layer on surface of commercial pure copper by coupling electric pulse and ultrasonics treatment[J]. Journal of Alloys and Compounds,2018(764):51-61.[10] 李国英,刘继成. 超声振动在金属塑性加工的应用[J]. 东北林业大学学报,1989,17(4):114-118.[11] 王国栋. 超声振动压力加工的现状与展望[J]. 热加工工艺, 1980(8):3-17.[12] 张士宏. 金属材料的超声塑性加工[J]. 金属成形工艺, 1994,12(8):102-106.[13] ABHISHEK P,GIRISH C V,HARIHARAN K,et al. Erratum to: dislocation density based constitutive model for ultrasonic assisted deformation[J]. Mechanics Research Communications,2018(90):4-6.[14] KUMAR S,WU C S. A novel technique to join Al and Mg alloys: ultrasonic vibration assisted linear friction stir welding ScienceDirect[J]. Materials Today: Proceedings,2018,5(9): 18142-18151.[15] 刘艳雄. 超声波辅助大塑性变形细化材料晶粒研究[D]. 武汉: 武汉理工大学, 2012.[16] 仲崇凯, 管延锦, 姜良斌, 等. 金属超声振动塑性成形技术研究现状及其发展趋势 [J].精密成形工程, 2015, 7(1): 9-15.[17] 程涛,刘艳雄,华林. 超声波振动辅助精冲成形工艺研究 [J]. 锻压技术,2016,41(4):5-30, 35.[18] 解振东. 镁/铝合金超声振动辅助塑性成形中的材料变形行为与超声作用机制研究[D]. 济南: 山东大学, 2019.[19] ZHANG M,ZHANG D,GENG D X,et al. Surface and sub-surface analysis of rotary ultrasonic elliptical end milling of Ti-6Al-4V[J]. Materials & Design,2020(191):7-10.[20] ZHAO W,WU C S,SU H. Numerical investigation of heat generation and plastic deformation in ultrasonic assisted friction stir welding[J]. Journal of Manufacturing Processes,2020(56):967-980.[21] ZHAO W,WU C S. Constitutive equation including acoustic stress work and plastic strain for modeling ultrasonic vibration assisted friction stir welding process[J]. International Journal of Machine Tools and Manufacture,2019(145):103-134.[22] LI Y,ZHAI W,WANG Z,et al. Investigation on the material flow and deformation behavior during ultrasonic-assisted incremental forming of straight grooves[J]. Journal of Materials Research and Technology,2019,9(1):11-12.[23] SAEED B,KAREN A,HAN Q. Ultrasonic assisted equal channel angular extrusion (UAE) as a novel hybrid method for continuous production of ultrafine grained metals[J]. Materials Letters,2016(169):19-31.[24] JAVIDRAD H,SALEMI S. Determination of Elastic Constants of Additive Manufactured Inconel 625 Specimens Using an Ultrasonic Technique[J]. The International Journal of Advanced Manufacturing Technology,2020,107(3):25-42.[25] HUNG J C,LIN C C. Investigations on the material property changes of ultrasonic vibration assisted aluminum alloy upsetting[J]. Materials and Design,2013(45):412-420.[26] ZHANG Q,YU L,SHANG X,et al. Residual stress relief of welded aluminum alloy plate using ultrasonic vibration [J]. Ultrasonics,2020(107):106-164.[27] SUN Z,YE Y,XU J,et al. Effect of electropulsing on surface mechanical behavior and microstructural evolution of inconel 718 during ultrasonic surface rolling process[J]. Journal of Materials Engineering and Performance,2019,28(11):10-24.[28] MCDONALD E J,HALLAM K R,BELL W,et al. Residual stresses in a multi-pass CrMoV low alloy ferritic steel repair weld [J]. Materials Science and Engineering A,2002,325(1-2):454-464.[29] MALAKI M,DING H. A review of ultrasonic peening treatment[J]. Materials & Design,2015,87(12):1072-1086.[30] SINGH K C,RAO N S,Majumdar B C. Effect of slip flow on the steady-state performance of aerostatic porous journal bearings[J]. Journal of Tribology,1984,106(1):156-162.[31] SALEM M A,EL-BATANONY I G,GHANEM M,et al. Effect of the matrix and reinforcement sizes on the microstructure, the physical and mechanical properties of Al-SiC composites[J]. Journal of engineering materials and technology,2017,139(1):23-37.[32] SACHIN K. Ultrasonic assisted friction stir processing of 6063 aluminum alloy[J]. Archives of Civil and Mechanical Engineering,2016,16(3):13-18.[33] PAGIDI,MADHUKAR,SELVARAT,et al. Tribological behavior of ultrasonic assisted double stir casted novel nano-composite material (AA7150-hBN) using Taguchi technique[J]. Composites Part B: Engineering,2019(175):56-62.[34] LIU Z,GE Y,ZHAO D,et al. Ultrasonic assisted sintering using heat converted from mechanical energy[J]. Metals-Open Access Metallurgy Journal,2020,10(7):9-14.[35] WANG X,WANG C,LIU Y,et al. An energy based modeling for the acoustic softening effect on the Hall-Petch behavior of pure titanium in ultrasonic vibration assisted microtension[J]. International Journal of Plasticity,2021(136):4-6.[36] GUNAY B A. Ultrasonic assisted incremental equal angular channel pressing process of AA 6063[J]. Advanced Engineering Materials,2020,23(2):1-5.[37] TEIMOURI R,LIU Z . An analytical prediction model for residual stress distribution and plastic deformation depth in ultrasonic assisted single ball burnishing process[J]. The International Journal of Advanced Manufacturing Technology, 2020,111(1):1-21.[38] LIU Z,GE Y,ZHAO D,et al. Ultrasonic assisted sintering using heat converted from mechanical energy[J]. Metals,2020,10(7):7-9.[39] SEETHARAM R,MADHUKAR P,YOGANJANEYULE G,et al. Mathematical models to predict flow stress and dynamically recrystallized grain size of deformed AA7150-5wt% B4C composite fabricated using ultrasonic-probe assisted stir casting process[J]. Metals and Materials International,2022(28): 931-944.[40] WILLERT M,ZIELINSKI T,RICKENS K,et al. Impact of ultrasonic assisted cutting of steel on surface integrity[J]. Procedia CIRP,2020,87(C):5-19.[41] MOHSEN K,OMID B,MOHAMMAD REZA RAZFAR. Finite element simulation and experimental investigation of residual stresses in ultrasonic assisted turning[J]. Ultrasonics,2020(108): 8-13.[42] KUMAR S,WU C S,PADHY G K,et al. Application of ultrasonic vibrations in welding and metal processing: A status review[J]. Journal of Manufacturing Processes,2017(26): 295-322.[43] MENG B,CAO B N,WAN M,et al. Constitutive behavior and microstructural evolution in ultrasonic vibration assisted deformation of ultrathin superalloy sheet[J]. International Journal of Mechanical Sciences,2019(157): 609-618.[44] KANG J R,LIU X,XU M J. Plastic deformation of pure copper in ultrasonic assisted micro-tensile test[J]. Materials Science and Engineering: A,2020(785):139364.[45] LIU T,LIN J,GUAN Y, et al. Effects of ultrasonic vibration on the compression of pure titanium[J]. Ultrasonics,2018(89):26-33.[46] BAGHERZADEH S,ABRINIA K, LIU Y,et al. The effect of combining high-intensity ultrasonic vibration with ECAE process on the process parameters and mechanical properties and microstructure of aluminum 1050[J]. International Journal of Advanced Manufacturing Technology,2017,88(1-4):229-240.[47] ZHANG X,SUI H,ZHANG D,et al. An analytical transient cutting force model of high-speed ultrasonic vibration cutting[J]. The International Journal of Advanced Manufacturing Technology,2018,95(9-12):3929-4101.[48] JIAN Z,LIU Z. Investigations of ultrasonic frequency effects on surface deformation in rotary ultrasonic roller burnishing Ti-6Al-4V[J]. Materials & Design,2016(107):238-249.[49] FARTASHVAND V,ABDULLAH A,VANINI S S. Investigation of Ti-6Al-4V alloy acoustic softening[J]. Ultrasonics Sonochemistry,2016(38):744-749.[50] HU J,TETSUHIDE S,MING Y. Investigation on ultrasonic volume effects: stress superposition, acoustic softening and dynamic impact[J]. Ultrasonics Sonochemistry,2018(48):240-248. [51] ZHANG X,HE S,JIANG X,et al. Measurement of ultrasonic frequency repetitive impulse cutting force signal[J]. Measurement,2018(129):34-77.[52] ZHANG X,SUI H,ZHANG D,et al. Feasibility study of high-speed ultrasonic vibration cutting titanium alloy[J]. Journal of Materials Processing Technology, 2017, 247(19):111-120.[53] PATIL S,JOSHI S,TEWARI A,et al. Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V[J]. Ultrasonics,2014, 54(2): 694-705.[54] AHMADI F,FARZIN M,MANDEGARI M. Effect of grain size on ultrasonic softening of pure aluminum[J]. Ul-trasonics, 2015(63):111-117.[55] CHEN Z,LIU C,RANI EKTA,et al. Ultrasonic vibration induced severe plastic deformation of Cu foils: effects of elastic-plastic stress wave bounce,acoustic softening, and size effect[J]. The International Journal of Advanced Manufacturing Technology,2021,115(11-12):5-8.[56] VAHDATI M, MAHDAVINEJAD R, AMINI S. Invest-igation of the ultrasonic vibration effect in incremental sheet metal forming process[J]. Proceedings of the Institu-tion of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2017, 231(6):27-44.[57] WANG X, QI Z, CHEN W. Investigation of mechanical and microstructural characteristics of Ti-45Nb undergoing transversal ultrasonic vibration-assisted upsetting[J]. Mat-erials Science & Engineering A, 2021(813):7-15.[58] XIE Z, GUAN Y, YU X, et al. Effects of ultrasonic vibration on performance and microstructure of AZ31 magnesium alloy under tensile deformation[J]. Journal of Central South University, 2018, 25(7):1545-1559.

相似文献/References:

[1]李景学,冯宝仲,胡海波,等.HFW钢管弯曲的特殊原因分析[J].焊管,2012,35(10):60.[doi:1001-3938(2012)10-0060-04]
 LI Jingxue,FENG Baozhong,HU Haibo,et al.Analysis of Special Reason Caused HFW Pipe Bend[J].,2012,35(6):60.[doi:1001-3938(2012)10-0060-04]
[2]赵 波.电弧超声技术在焊接工艺中的应用研究[J].焊管,2014,37(12):32.[doi:1001-3938(2014)12-0032-07]
 ZHAO Bo.Application Research of Arc Ultrasonic Technology in the Welding Process[J].,2014,37(6):32.[doi:1001-3938(2014)12-0032-07]
[3]汪翰云,王 慧,张万鹏,等.焊接残余应力和管道完整性分析[J].焊管,2015,38(3):67.[doi:1001-3938(2015)03-0067-06]
 Edited and Translated by WANG Hanyun,WANG Hui,ZHANG Wanpeng,et al.Welding Residual Stress and Pipeline Integrity[J].,2015,38(6):67.[doi:1001-3938(2015)03-0067-06]
[4]许晓锋,高豹华 编译.塑性变形对落锤撕裂试验异常断口的影响[J].焊管,2015,38(7):58.[doi:1001-3938(2015)07-0058-06]
 Edited and Translated by XU Xiaofeng,GAO Baohua.Effect of Plastic Deformation on Occurrence of Abnormal Fracture During DWTT[J].,2015,38(6):58.[doi:1001-3938(2015)07-0058-06]
[5]郑茂盛,胡 军,滕海鹏,等.管道弯曲塑性屈曲应变的评价[J].焊管,2015,38(10 ):19.[doi:1001-3938(2015)10-0019-09]
 ZHENG Maosheng,HU Jun,TENG Haipeng,et al.Assessment on Pipeline Plastic Bending Buckling Strain[J].,2015,38(6):19.[doi:1001-3938(2015)10-0019-09]
[6]郑茂盛,胡 军,滕海鹏,等.管道弯曲塑性屈曲应变的评价[J].焊管,2015,38(10 ):19.[doi:1001-3938(2015)10-0019-09]
 ZHENG Maosheng,HU Jun,TENG Haipeng,et al.Assessment on Pipeline Plastic Bending Buckling Strain[J].,2015,38(6):19.[doi:1001-3938(2015)10-0019-09]
[7]田晨超,焦 磊,张 娟,等.纯钛板材室温拉伸塑性变形的各向异性[J].焊管,2018,41(10):18.[doi:10.19291/j.cnki.1001-3938.2018.10.004]
 TIAN Chenchao,JIAO Lei,ZHANG Juan,et al.Anisotropy of Plastic Deformation of Pure Titanium Sheet During Tensile Test at Room Temperature[J].,2018,41(6):18.[doi:10.19291/j.cnki.1001-3938.2018.10.004]
[8]郑茂盛,刘姣姣,王 怡,等.考虑变形硬化的管道塑性弯曲屈曲临界应变预测[J].焊管,2020,43(1):1.[doi:10.19291/j.cnki.1001-3938.2020.01.001]
 ZHENG Maosheng,LIU Jiaojiao,WANG Yi,et al.Prediction for Pipeline Plastic Flexural Buckling Critical Strain under Deformation-hardening[J].,2020,43(6):1.[doi:10.19291/j.cnki.1001-3938.2020.01.001]
[9]曾 锋,杨专钊,李德君,等.J55 LC套管断裂失效原因分析[J].焊管,2020,43(10):40.[doi:10.19291/j.cnki.1001-3938.2020.09.007]
 ZENG Feng,YANG Zhuanzhao,LI Dejun,et al.Fracture Failure Analysis of J55 LC Casing[J].,2020,43(6):40.[doi:10.19291/j.cnki.1001-3938.2020.09.007]
[10]张志明,高广俊,印 乐,等.埋弧焊管焊接接头背面导向弯曲失效原因分析[J].焊管,2021,44(7):59.[doi:10.19291/j.cnki.1001-3938.2021.07.012]
 ZHANG Zhiming,GAO Guangjun,YIN Le,et al.Failure Analysis of Back Guide Bending of Welded Joint of Submerged Arc Welded Pipe[J].,2021,44(6):59.[doi:10.19291/j.cnki.1001-3938.2021.07.012]

备注/Memo

备注/Memo:
收稿日期:2022-01-12基金项目: 国家自然科学基金“CrCoNi中熵合金梯度孪晶结构多角度作用下止裂增韧原理与设计”(项目编号12102340);西安石油大学大学生创新创业训练计划“结构可控梯度孪晶中熵合金在宽温度域内的强韧化机制研究”(项目编号S202110705063)。作者简介:吝雨晨(2001—),男,陕西渭南人,本科,主要从事梯度金属材料变形机制研究工作。
更新日期/Last Update: 2022-06-21