[1]郭龙龙,王宏,付堃,等.天然气管道在役焊接熔池流动行为及成形研究[J].焊管,2023,46(9):1-8.[doi:10.19291/j.cnki.1001-3938.2023.09.001]
 GUO Longlong,WANG Hong,FU Kun,et al.Study on Flow Behavior and Forming of Welding Molten Pool of Natural Gas Pipeline in Service[J].,2023,46(9):1-8.[doi:10.19291/j.cnki.1001-3938.2023.09.001]
点击复制

天然气管道在役焊接熔池流动行为及成形研究()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
46
期数:
2023年第9期
页码:
1-8
栏目:
试验与研究
出版日期:
2023-09-19

文章信息/Info

Title:
Study on Flow Behavior and Forming of Welding Molten Pool of Natural Gas Pipeline in Service
文章编号:
10.19291/j.cnki.1001-3938.2023.09.001
作者:
郭龙龙王宏付堃周新义王军
1. 西安石油大学 机械工程学院,西安 710065;2. 中国石油宝鸡石油机械有限责任公司,陕西 宝鸡 721002; 3. 中油国家石油天然气管材工程技术研究中心有限公司,西安 710018
Author(s):
GUO Longlong WANG Hong FU Kun ZHOU Xinyi WANG Jun
1. Mechanical Engineering College, Xi′an Shiyou University, Xi′an 710065, China; 2. CNPC Baoji Oilfield Machinery Co., Ltd., Baoji 721002, Shaanxi, China; 3. Chinese National Engineering Research Center for Petroleum and Natural Gas Tubular Goods Co., Ltd., Xi’an 710018, China
关键词:
天然气管道在役焊接焊缝成形焊接电流散热系数
Keywords:
natural gas pipeline in service welding weld forming welding current heat dissipation coefficient
分类号:
TG402
DOI:
10.19291/j.cnki.1001-3938.2023.09.001
文献标志码:
A
摘要:
为解决天然气管道在役焊接安全性评价中焊缝几何形状不易控制的问题,探明工艺参数对焊缝参数的影响规律,基于Fluent软件建立了天然气管道在役焊接过程中焊缝熔滴下落、与熔池混合、焊缝温度场-流场动态演变过程的三维动态模型,分析了焊接电流、管壁散热系数对熔池温度场、流场及焊缝几何参数的影响。结果表明,随着焊接电流的增加,焊缝宽度、熔池深度逐渐增加,焊缝高度逐渐降低;与焊接电流110 A相比,焊接电流为170 A时焊缝宽度、熔池深度分别增加了4.92%和28.39%,焊缝高度降低了16.77%;而随着散热系数的增加,焊缝宽度、熔池深度逐渐减小,焊缝高度逐渐增加;与散热系数620 W/(m2?℃)相比,散热系数为2 320 W/(m2?℃)时焊缝宽度、熔池深度分别降低了3.39%和9.28%,焊缝高度则增加了5.27%;散热系数对焊缝参数的影响程度由大到小依次是熔池深度、焊缝高度、焊缝宽度。研究结果可为在役管道现场焊接应用提供理论参考。
Abstract:
In order to solve the problem that the weld geometry is not easy to obtain in the in service welding safety evaluation of natural gas pipeline, and to find out the law of the influence of process parameters on weld parameters, a three?imensional dynamic model was established based on Fluent software for the dynamic evolution process of the temperature field and flow field of the weld drop, mixing with the weld pool and forming the weld. The influences of welding current and heat dissipation coefficient on temperature field, flow field and weld geometry parameters were analyzed. The results show that with the increase of welding current, the width of weld and the depth of molten pool increase gradually, and the height of weld decreases gradually. Compared with 110 A, the weld width and pool depth increased by 4.92% and 28.39% respectively when the welding current is 170 A, and the weld height decreases by 16.77%. With the increase of heat dissipation coefficient, the width of weld and the depth of weld pool gradually decrease, and the height of weld gradually increases. Compared with 620 W/ (m2?℃), when the heat dissipation coefficient is 2 320 W/ (m2?℃), the weld width and pool depth are reduced by 3.39% and 9.28% respectively, and the weld height is increased by 5.27%. The influence degree of heat dissipation coefficient on weld parameters in descending order is the depth of weld pool, the height of weld seam and the width of weld seam. The research results can provide theoretical reference for the application of in service pipeline welding process engineering.

参考文献/References:

[1] 王勇,孙启平,韩涛,等.基于等效缺陷尺寸在役焊接安全性评价研究[J].中国石油大学学报(自然科学版),2017,41(1):124-129.[2] 黄志强,汤海平,丁雅萍,等.天然气管道在役焊接温度场数值模拟[J].焊接学报,2018,39(6):29-34.[3] ALIAN A R,SHAZLY M,MEGAHED M M.3D finite element modeling of in?ervice sleeve repair welding of gas pipelines[J]. International Journal of Pressure Vessels and Piping,2016(146):216-229.[4] WANG Y,WANG L,DI X,et al.Simulation and analysis of temperature field for in?ervice multi?ass welding of a sleeve fillet weld[J].Computational Materials Science,2013(68):198-205.[5] SABAPATHYA P N,WAHABA M A,PAINTERB M J.Numerical models of in?ervice welding of gas pipelines[J]. Journal of Materials Processing Technology,2001,118(1-3):14-21.[6] WAHAB M A,SABAPATHY P N,PAINTER M J.The onset of pipewall failure during “in?ervice”welding of gas pipelines[J]. Journal of Materials Processing Technology,2005,168(3):414-422.[7] 薛小龙,姚建平,罗晓明,等.压力管道在线焊接烧穿的预测[J].焊接技术,2008,37(5):55-58.[8] ASL H M,VATANI A. Numerical analysis of the burn?hrough at in?ervice welding of 316 stainless steel pipeline[J].International Journal of Pressure Vessels and Piping,2013(105-106):49-59.[9] CISILINO A P,CHAPETTI M D,OTEGUI J L.Minimum thickness for circumferential sleeve repair fillet welds in corroded gas pipelines[J]. International Journal of Pressure Vessels and Piping,2002,79(1):67-76.[10] LI C,WANG Y. Three?imensional finite element analysis of temperature and stress distributions for in?ervice welding process[J]. Materials & Design,2013(52):1052-1057.[11] HUANG Z,TANG H,DING Y,et al. Numerical simulations of temperature for the in?ervice welding of gas pipeline[J].Journal of Materials Processing Technology,2017(248):72-78.[12] 郭广飞,王勇,韩涛. X70钢高压输气管线在役焊接剩余强度尺寸效应数值模拟[J].焊接学报,2016, 37(9): 110-114.[13] 李艳红. 燃气管线在役抢修热过程分析与温度场控制[D].天津:天津大学,2010.[14] 刘永滨,冯立德,张季娜,等.天然气管道在役修补焊接过程的数值模拟[J].焊接学报,2019,40(10): 111-115.[15] 朱汪友.天然气工况对中俄东线X80管道在役焊接温度场的影响[DB/OL].(2022-06-29)[2022-08-16].https://kns.cnki.net/kcms/detail/13.1093.TE.20220628.1833.002.html.[16] CHEN Y H,WANG Y,WANG Z F. Numerical simulation of thermal cycle of in?ervice welding on X70 steel gas pipeline[J]. Advanced Materials Research,2009(79):1169-1172.[17] 郭广飞. X70钢高压气管线在役焊接烧穿判据研究[D].青岛:中国石油大学(华东),2014.[18] 菅晓霞,武传松.Fe蒸气对等离子弧焊接熔池行为的影响[J].金属学报,2016,52(11):1467-1476.[19] 李岩,陈岩,王领,等.等离子弧焊接多物理场耦合输运模型[J].工程热物理学报,2021,42(8):2113-2121.[20] 雷洋洋. GMA增材制造熔池热场及流场数值分析[D].成都:西南交通大学,2019.[21] KIM C H,ZHANG W,DEBROY T. Modeling of temperature field and solidified surface profile during gas?etal arc fillet welding[J].Journal of Applied Physics,2003,94(4):2667-2679.[22] KUMAR A,DEBROY T.Calculation of three?imensional electromagnetic force field during arc welding[J].Journal of Applied Physics,2003,94(2):1267-1277.[23] 徐剑侠.激光-MIG复合焊接热过程和熔池流场的数值分析[D].济南:山东大学,2017.[24] XU G,CAO Q,HU Q,et al. Modelling of bead hump formation in high speed gas metal arc welding[J]. Science and Technology of Welding and Joining,2016,21(8):700-710.[25] 吴宣楠,冯妍卉,李岩,等.穿孔等离子弧焊接弧与熔池的耦合模拟及正交分析[J].金属学报,2015, 51(11):1365-1376.[26] HU J,TSAI H L.Metaltransfer and arc plasma in gas metal arc welding[J].Journal of Heat Transfer,2007,129(8):1025-1035.[27] 谷云龙,丁雅萍,袁代英,等.焊接顺序对管道在役焊接温度和应力场的影响[J].压力容器,2018,35(3):44-50.[28] RAO Z H,ZHOU J,LIAO S M,et al.Three?imensional modeling of transport phenomena and their effect on the formation of ripples in gas metal arc welding[J].Journal of Applied Physics,2010,52(7):1709-1724.

相似文献/References:

[1]李美艳,王勇,宋立新,等.管线钢在役焊接接头残余应力的数值模拟[J].焊管,2011,34(7):18.
[2]李为卫,王晓江.天然气输送钢管标准仍需考虑的几个技术问题[J].焊管,2012,35(12):57.[doi:001-3938(2012)12-0057-05]
 LI Weiwei,WANG Xiaojiang.Several Technical Problems of Natural Gas Pipeline Steel Pipe’s Standard[J].,2012,35(9):57.[doi:001-3938(2012)12-0057-05]
[3]牛 辉,张 君,赵红波,等.X70抗大变形钢管研发及批量生产[J].焊管,2013,36(6):26.[doi:1001-3938(2013)06-0026-06]
 NIU Hui,ZHANG Jun,ZHAO Hongbo,et al.Research & Development and Mass Production of X70 Grade Welded Pipe with Large Deformation Resistance[J].,2013,36(9):26.[doi:1001-3938(2013)06-0026-06]
[4]李 根,李相蓉.在役天然气管道缺陷安全评定及有限元分析[J].焊管,2014,37(8):16.[doi:1001-3938(2014)08-0016-04]
 LI Gen,LI Xiangrong.Defects Assessment for Gas Pipeline in Service and Finite Element Analysis[J].,2014,37(9):16.[doi:1001-3938(2014)08-0016-04]
[5]李 根,李相蓉.凹陷缺陷对输气管道强度的影响[J].焊管,2015,38(10 ):53.[doi:1001-3938(2015)10-0053-04]
 LI Gen,LI Xiangrong.Effects of Sunken Defects on the Strength of Gas Pipeline[J].,2015,38(9):53.[doi:1001-3938(2015)10-0053-04]
[6]王 珂,等.在役输气管道分层缺陷无损检测及安全评价[J].焊管,2016,39(7):65.[doi:10.19291/j.cnki.1001-3938.2016.07.015]
 WANG Ke,LUO Jinheng,et al.Non-destructive Inspection and Safety Evaluation for Lamination Defect of Gas Transportation Pipeline on Service[J].,2016,39(9):65.[doi:10.19291/j.cnki.1001-3938.2016.07.015]
[7]蒋浩泽,等.天然气管道用埋弧焊钢管焊缝无损检测对标分析[J].焊管,2018,41(10):55.[doi:10.19291/j.cnki.1001-3938.2018.10.012]
 JIANG Haoze,LI Weiwei,XIE Ping,et al.Standard Comparison of Non-destructive Testing for Submerged arc Welding Pipe of Natural Gas Pipeline[J].,2018,41(9):55.[doi:10.19291/j.cnki.1001-3938.2018.10.012]
[8]穆云婷,王云龙,任天晓,等.国内外标准中关于高钢级大直径天然气管道评价的对比分析[J].焊管,2021,44(11):62.[doi:10.19291/j.cnki.1001-3938.2021.11.010]
 CHEN Xiaolin.Influencing Factors Analysis of Drop Weight Tear Test Result of X65M Pipeline Steel[J].,2021,44(9):62.[doi:10.19291/j.cnki.1001-3938.2021.11.010]
[9]李乔楚,陈军华.基于WSR的岩溶区域管道破坏特征与风险管控措施[J].焊管,2022,45(2):32.[doi:10.19291/j.cnki.1001-3938.2022.02.005]
 LI Qiaochu,CHEN Junhua.Failure Characteristics and Risk Control Measures of Pipeline in Karst Area based on WSR[J].,2022,45(9):32.[doi:10.19291/j.cnki.1001-3938.2022.02.005]
[10]李乔楚,杨瀚匀.土体塌陷作用下埋地管道力学分析研究现状[J].焊管,2022,45(7):12.[doi:10.19291/j.cnki.1001-3938.2022.07.003]
 LI Qiaochu,YANG Hanyun.Research Status of Mechanical Analysis of Buried Pipeline under Soil Collapse[J].,2022,45(9):12.[doi:10.19291/j.cnki.1001-3938.2022.07.003]

备注/Memo

备注/Memo:
收稿日期:2023-06-26基金项目: 陕西省自然科学基础研究计划“X70管道在役焊接焊缝成形模拟及安全性评价”(项目编号2020JQ-780)。作者简介:郭龙龙(1988—),男,讲师,现主要从事管道在役焊接、油气装备再制造的焊接工艺及其数值模拟等方面研究。
更新日期/Last Update: 2023-09-25