[1]王海登,倪伸伸,刘希林,等.钛合金缺陷相控阵超声衍射波定量方法[J].焊管,2022,45(12):28-32,41.[doi:10.19291/j.cnki.1001-3938.2022.12.005]
 WANG Haideng,NI Shenshen,LIU Xilin,et al.Quantitative Method of Phased Array Ultrasonic Diffraction Wave for Titanium Alloy Defects[J].,2022,45(12):28-32,41.[doi:10.19291/j.cnki.1001-3938.2022.12.005]
点击复制

钛合金缺陷相控阵超声衍射波定量方法()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
45
期数:
2022年第12期
页码:
28-32,41
栏目:
应用与开发
出版日期:
2022-12-28

文章信息/Info

Title:
Quantitative Method of Phased Array Ultrasonic Diffraction Wave for Titanium Alloy Defects
文章编号:
10.19291/j.cnki.1001-3938.2022.12.005
作者:
王海登倪伸伸刘希林袁伟强
中国船舶重工集团公司第七二五研究所, 河南 洛阳 471000
Author(s):
WANG Haideng NI Shenshen LIU Xilin YUAN Weiqiang
Luoyang Ship Material Research Institute, Luoyang 471000, Henan, China
关键词:
钛合金缺陷定量衍射波相控阵超声信噪比
Keywords:
titanium alloy defect quantification diffraction wave phased array ultrasonic signal to noise ratio
分类号:
TG146.23
DOI:
10.19291/j.cnki.1001-3938.2022.12.005
文献标志码:
A
摘要:
针对传统衍射波设置法受散射杂波干扰难以进行钛合金缺陷定量的问题,分析了体积型缺陷和面积型缺陷的超声衍射波信号特点,并通过试验测试了钛合金材料的衍射波信号特征,提出了基于相控阵超声的高信噪比衍射波定量方案。制备了不同尺寸的长横孔试块和通槽试块,分别模拟体积型缺陷和面积型缺陷,测试试验定量。结果表明,采用相控阵超声衍射波定量方法对两种类型缺陷的定量精度均达到了1 mm以内。相控阵超声衍射波定量法操作简单,可为钛合金缺陷定量提供新的思路。
Abstract:
Aiming at the problem that the traditional diffraction wave setting method is difficult to quantify titanium alloy defects due to the interference of scattered clutter, the signal characteristics of ultrasonic diffraction wave in hole type defect and area type defect were analyzed, and the ultrasonic diffraction wave signal characteristics of titanium alloy were tested. A high signal-to-noise ratio diffraction wave quantification scheme based on phased array ultrasonic was proposed. Different sizes of long hole block and square groove block were prepared to simulate hole type defect and area type defect respectively. The quantitative results of the test showed that the quantitative accuracy of the two types of defect was less than 1 mm. The operation of phased array ultrasonic quantitative method based on diffraction wave is simple and a new idea is provided for the defect quantitative method of titanium alloy.

参考文献/References:

[1] 王悦民,李衍,陈和坤. 相控阵超声检测技术与应用[M]. 北京:国防工业出版社,2014.[2] 谭达真,陈积乐. 相控阵超声检测典型特征缺陷图谱研究[J]. 中国特种设备安全,2021,37(4):75-79.[3] 刘明星. 电站金属材料超声相控阵检测缺陷长度定量研究[J]. 热加工工艺,2020,49(11):147-149.[4] 王少军,俞厚德,钱耀洲,等. 基于超声散射法的微小缺陷及近表面缺陷的检测[J]. 无损检测,2014,36(1):49-53.[5] 陆铭慧,潘文超,刘勋丰. 基于衍射波的孔类缺陷超声相控阵定量方法研究[J]. 应用声学,2015,34(5):385-390.[6] 陈振华,许倩,卢超. 基于超声相控阵衍射波图像的缺陷测量方法[J]. 应用声学,2015,37(4):447-454.[7] 李衍. 相控阵超声对裂纹表征和定量的重要贡献[J].无损探伤,2013,37(1):1-8.[8] 冯云国,刘广兴,张丙法. 端点衍射法测量焊接接头内部缺陷高度[J]. 无损检测,2012,34(7):42-44.[9] 李衍. 相控阵双波法缺陷定量与定性[J]. 中国特种设备安全,2013,29(11):28-32.[10] 应崇福,张守玉,王丽生. 固体中圆柱形空腔上爬波的光弹法实验研究[J]. 中国科学,1991(6):681-686.[11] 王小民,廉国选,安志武. 裂纹尖端超声散射场及动应力集中的动态光弹观测[J]. 声学学报,2016,41(5):549-554.[12] 谈洋. 超声相控阵裂纹定量检测有限差分法数值模拟[D]. 大连:大连理工大学,2013.[13] 陈振华,张翀,卢超,等.奥氏体不锈钢焊缝超声TOFD检测中声波传播特性分析及其应用[J]. 焊接学报,2016,37(8):91-95.[14] 王弘,梁菁,史亦韦,等. 大型钛合金锻件厚度对超声杂波水平的影响[J]. 无损检测,2014,36(9):14-18.[15] NARDONI D,NARDONI P,CERTO M,et al. Sizing in the phased array technique using diffraction and amplitude displacement[J]. Or Insight,2008,50(10):574-578.

相似文献/References:

[1]许贵芝 编译.不锈钢与钛合金的转接管的焊接[J].焊管,2009,32(11):70.[doi:1001-3938(2009)11-0070-03]
 Edited and Translated by XU Gui-zhi.Welding Between Stainless Steel and Titanium Alloy Different Diameter Transfer Tube[J].,2009,32(12):70.[doi:1001-3938(2009)11-0070-03]
[2]杨 凯,王永军,云海涛,等.TC4钛合金薄壁圆管纵缝TIG焊接模拟与分析[J].焊管,2015,38(7):6.[doi:1001-3938(2015)07-0006-05]
 YANG Kai,WANG Yongjun,YUN Haitao,et al.Simulation and Analysis on Longitudinal TIG Welding of TC4 Titanium Alloy Thin-walled Circular Tube[J].,2015,38(12):6.[doi:1001-3938(2015)07-0006-05]
[3]张 峰,等.钛合金油井管应用研究现状及进展[J].焊管,2017,40(11):7.[doi:10.19291/j.cnki.1001-3938.2017.11.002]
 ZHANG Feng,HUANG Wenke,LI Yuanzheng,et al.Application Research Status and Progresses of Titanium Alloy OCTG[J].,2017,40(12):7.[doi:10.19291/j.cnki.1001-3938.2017.11.002]
[4]马铁军,王 刚,李文亚,等.钛合金线性摩擦焊界面氧化物“自清理”过程研究[J].焊管,2018,41(3):24.
 MA Tiejun,WANG Gang,LI Wenya,et al.Research on Self-cleaning Behavior of Interfacial Oxide During Titanium Linear Friction Welding[J].,2018,41(12):24.
[5]樊 浩,邢 丽.基于RGB值的钛合金氧化程度数值化评价[J].焊管,2018,41(8):35.[doi:10.19291/j.cnki.1001-3938.2018.08.006]
 FAN Hao,XING Li.Numerical Evaluation of Oxidation Degree of Titanium Alloy Based on RGB Value[J].,2018,41(12):35.[doi:10.19291/j.cnki.1001-3938.2018.08.006]
[6]刘 阳,张贵锋,王士元.钛合金与不锈钢异种金属钎焊的研究进展[J].焊管,2019,42(3):1.[doi:10.19291/j.cnki.1001-3938.2019.3.001]
 LIU Yang,ZHANG Guifeng,WANG Shiyuan.Research Progress on Dissimilar Metal Brazing of Titanium Alloy and Stainless Steel[J].,2019,42(12):1.[doi:10.19291/j.cnki.1001-3938.2019.3.001]
[7]武建勋,王建涛,康文军.钛合金材料电子束焊焊前激光清理工艺研究[J].焊管,2019,42(10):27.[doi:10.19291/j.cnki.1001-3938.2019.10.005]
 WU Jianxun,WANG Jiantao,KANG Wenjun.Study on the Laser Cleaning Technology before EBW of Titanium Alloy[J].,2019,42(12):27.[doi:10.19291/j.cnki.1001-3938.2019.10.005]
[8]何石磊,等.一种适用于钛合金油管气密封螺纹接头的开发[J].焊管,2020,43(9):16.[doi:10.19291/j.cnki.1001-3938.2020.09.004]
 HE Shilei,ZHOU Xinyi,et al.Development of Titanium Alloy Tubing Premium Connection withHigh Gas-tight Performance[J].,2020,43(12):16.[doi:10.19291/j.cnki.1001-3938.2020.09.004]
[9]王显林,陈长青,韩 旭,等.摩擦焊接式全钛合金钻杆焊区性能评价与研究[J].焊管,2021,44(5):19.[doi:10.19291/j.cnki.1001-3938.2021.05.004]
 WANG Xianlin,CHEN Changqing,HAN Xu,et al.Performance Evaluation and Research of Weld Zone for Friction Welded All Titanium Alloy Drill Pipe[J].,2021,44(12):19.[doi:10.19291/j.cnki.1001-3938.2021.05.004]
[10]丁稳稳,刘继雄,刘 晶,等.钛合金焊接接头残余应力超声波检测技术研究[J].焊管,2022,45(6):27.[doi:10.19291/j.cnki.1001-3938.2022.06.005]
 DING Wenwen,LIU Jixiong,LIU Jing,et al.Research on Ultrasonic Testing Technology of Residual Stress in Titanium Alloy Welded Joints[J].,2022,45(12):27.[doi:10.19291/j.cnki.1001-3938.2022.06.005]

备注/Memo

备注/Memo:
收稿日期:2022-05-05基金项目: 工信部高技术船舶科研项目“潜水器设计与试验重点标准研究”(项目编号CY04N20)。作者简介:王海登(1990—),男,硕士,工程师,主要从事无损检测新技术应用研究工作。
更新日期/Last Update: 2023-01-06