[1]张念涛,吴志星,李 晋,等.X65钢管内壁堆焊镍基合金耐蚀层过程的数值仿真模拟[J].焊管,2016,39(2):14-18.[doi:10.19291/j.cnki.1001-3938.2016.02.004]
 ZHANG Niantao,WU Zhixing,LI Jin,et al.Nickel-base Alloy Corrosion Resistance Layer Numerical Simulation of X65 Steel Pipe Inwall Surfacing Welding[J].,2016,39(2):14-18.[doi:10.19291/j.cnki.1001-3938.2016.02.004]
点击复制

X65钢管内壁堆焊镍基合金耐蚀层过程的数值仿真模拟
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
39
期数:
2016年第2期
页码:
14-18
栏目:
试验与研究
出版日期:
2016-02-28

文章信息/Info

Title:
Nickel-base Alloy Corrosion Resistance Layer Numerical Simulation of X65 Steel Pipe Inwall Surfacing Welding
文章编号:
10.19291/j.cnki.1001-3938.2016.02.004
作者:
张念涛吴志星李 晋杨 谦陈伟军率 鹏
海洋石油工程股份有限公司特种设备公司, 天津 300452
Author(s):
ZHANG Niantao WU Zhixing LI Jin YANG Qian CHEN Weijun SHUAI Peng
Special Equipment Company of Offshore Oil Engineering Co., Ltd., Tianjin 300452, China
关键词:
X65钢管堆焊625镍基合金数值模拟
Keywords:
X65 steel pipe surfacing welding 625 nickel-base alloy numerical simulation
分类号:
TG445
DOI:
10.19291/j.cnki.1001-3938.2016.02.004
文献标志码:
A
摘要:
为了提高含硫管道的耐腐蚀性能,通过对ANSYS焊接温度场热源理论和边界条件进行研究,建立了堆焊过程的数学模型和物理模型,对X65钢管内壁堆焊625镍基合金温度场和应力场进行了动态模拟。模拟分析结果显示,焊接温度高达1 700 ℃,堆焊层和钢管界面形成了比较好的熔合;堆焊结构的径向和轴向残余应力均很小,钢管表面残余应力为压应力,最大残余压应力达202 MPa。研究结果表明,采用合理的焊接参数,在X65钢管内壁堆焊625镍基合金层,可保证堆焊结构的可靠性,提高管道的耐腐蚀性能。
Abstract:
In order to increase the corrosion resistance performance of sulfur-containing pipeline, after research on ANSYS welding temperature field heat source theory and boundary conditions, the mathematical model and physical model of surfacing welding process were established, and the dynamic simulation was conducted for 625 nickel-base alloy temperature field and stress field of X65 steel pipe inwall surfacing welding. The simulation results indicated that when the welding temperature is as high as 1 700 ℃, the surfacing welding layer and steel pipe interface form better fusion; the residual stress of transverse and longitudinal direction both are small, the residual stress on steel pipe surface is compressive stress, the maximum stress value is 202 MPa. The research result showed that adopting reasonable welding parameters to carry out 625 nickel-base alloy surfacing welding on X65 steel pipe inwall, which can ensure the reliability of surfacing welding structure and increase the corrosion resistance performance of pipeline.

参考文献/References:

[1] 周勇军, 顾伯勤, 朱廷风,等. 热等压法钢塑复合管生产技术研究[J]. 材料与焊接, 2001, 22(6): 59-60.
[2] 鞠虹, 王君, 唐晓,等. 油气集输管道在海洋环境中的腐蚀与防护[J]. 石油化工设备, 2010, 39(5): 41-47.
[3] 孙丽, 李长俊, 彭善碧, 等. CO2腐蚀影响因素研究[J].管道技术与设备, 2008(6): 35-37.
[4] 陈东, 柳伟, 路民旭. 钢的高温高压CO2腐蚀产物膜研究进展[J]. 腐蚀科学与防护技术, 2006, 18(3): 192-195.
[5] 李坷, 姜放, 陈文梅. 井下油套管二氧化碳腐蚀[J]. 石油与天然气化工, 2006, 35(4): 300-304.
[6] 陈尧, 白真权,熊惠. N80钢在高温高压下的抗CO2腐蚀性能[J]. 石油与天然气化工, 2006, 35(6): 470-472.
[7] 方洪渊. 焊接结构学[M]. 北京: 机械工业出版社,2008.
[8] 李冬林. 焊接应力和变形的数值模拟研究[D]. 武汉: 武汉理工大学, 2003.
[9] 严仁军. 焊接结构的残余应力研究[D]. 武汉: 武汉理工大学, 2006.
[10] 姬丽森, 凌泽民, 何健, 等. Inconel 718镍基合金管道焊接残余应力的数值模拟[J]. 热加工工艺, 2006,44(5): 199-204.

相似文献/References:

[1]张希川,李 健,张瑞涛,等.管道内壁不锈钢焊条堆焊的耐腐蚀工艺研究[J].焊管,2012,35(8):9.[doi:1001-3938(2012)08-0009-04]
 ZHANG Xichuan,LI Jian,ZHANG Ruitao,et al.Research on Corrosion Resistance Process of Stainless Steel Electrode Overlaying Welding on the Inner Wall of Pipeline[J].,2012,35(2):9.[doi:1001-3938(2012)08-0009-04]
[2]付现桥,徐 敬,卜明哲,等.L360QS/316L不锈钢复合钢管焊接工艺和性能研究[J].焊管,2014,37(2):48.[doi:1001-3938(2014)02-0048-05]
 Fu Xianqiao,XU Jing,BU Mingzhe,et al.Welding Process and Performance Study on L360QS/316L Stainless Steel Clad Pipe[J].,2014,37(2):48.[doi:1001-3938(2014)02-0048-05]
[3]左丽娜,杜先鹏,马玉强,等.大型阀门耐腐蚀层的堆焊与加工工艺研究[J].焊管,2014,37(3):34.[doi:1001-3938(2014)03-0034-05]
 ZUO Lina,DU Xianpeng,MA Yuqiang,et al.Research on Corrosion Resistance Layers Surfacing and Cutting Processes of Large-scale Valve[J].,2014,37(2):34.[doi:1001-3938(2014)03-0034-05]
[4]何 帅,王立君,梁恩宝,等.预测X65钢堆焊质量的PSO+BP算法[J].焊管,2015,38(2):5.[doi:1001-3938(2015)02-0005-06]
 HE Shuai,WANG Lijun,LIANG Enbao.PSO + BP Algorithm Prediction of X65 Steel Surfacing Quality[J].,2015,38(2):5.[doi:1001-3938(2015)02-0005-06]
[5]王富铎,梁国栋,王 斌,等.海洋用CRA双金属复合管管端全自动堆焊工艺改进[J].焊管,2015,38(3):43.[doi:1001-3938(2015)03-0043-05]
 WANG Fuduo,LIANG Guodong,WANG Bin,et al.Automatic Overlay Welding Procedure Improvement of the CRA Bimetal Lined Pipe Ends Used in Offshore[J].,2015,38(2):43.[doi:1001-3938(2015)03-0043-05]
[6]杨 玭,曹晶晶,袁鹏斌.316L/X65双金属复合管管端根焊工艺研究[J].焊管,2015,38(12):40.[doi:1001-3938(2015)12-0040-06]
 YANG Pin,CAO Jingjing,YUAN Pengbin.Research on Root Welding Process of 316L/X65 Double-metal Composite Pipe End[J].,2015,38(2):40.[doi:1001-3938(2015)12-0040-06]
[7]杜兴吉,沈 赟,沈晓军,等.X射线平板数字成像技术在复合管管端堆焊检测中的应用[J].焊管,2016,39(6):22.[doi:10.19291/j.cnki.1001-3938.2016.06.005]
 DU Xingji,SHEN Yun,SHEN Xiaojun,et al.Application of X-ray Panel Digital Imaging Inspection Technology inSurfacing Welding of Composite Pipes Tube End[J].,2016,39(2):22.[doi:10.19291/j.cnki.1001-3938.2016.06.005]
[8]张俊宝,唐 识,梅 乐,等.埋弧堆焊低合金钢熔敷金属组织和性能研究[J].焊管,2016,39(8):16.[doi:10.19291/j.cnki.1001-3938.2016.08.004]
 ZHANG Junbao,TANG Shi,MEI Le,et al.Study on Microstructure & Properties of Submerged Arc Surfacing Welding Low-alloy Steel Weld Metal[J].,2016,39(2):16.[doi:10.19291/j.cnki.1001-3938.2016.08.004]
[9]潘 强,刘尔玺,冯淳元,等.Q235钢板表面堆焊不锈钢改性处理[J].焊管,2017,40(4):22.[doi:10.19291/j.cnki.1001-3938.2017.04.005]
 PAN Qiang,LIU Erxi,FENG Chunyuan,et al.Q235 Steel Plate Surface Overlaying Stainless Steel Modified Process[J].,2017,40(2):22.[doi:10.19291/j.cnki.1001-3938.2017.04.005]
[10]吴建英.细长喷水管道的堆焊工艺及变形控制[J].焊管,2017,40(9):39.[doi:10.19291/j.cnki.1001-3938.2017.09.009]
 WU Jianying.Surfacing Welding Process and Deformation Control of Elongated Spary Pipe[J].,2017,40(2):39.[doi:10.19291/j.cnki.1001-3938.2017.09.009]

备注/Memo

备注/Memo:
修改稿收稿日期: 2015-12-02
基金项目: 国家科技重大基金支助项目“深水水下生产设施制造测试装备及技术”(项目号2011ZX05027-004)。
作者简介: 张念涛(1985—), 男, 工程师, 硕士, 现主要从事海洋钢结构、 压力容器、 水下结构物的焊接及防腐工作。
更新日期/Last Update: