[1]牛辉,张 君,王 磊,等.碳当量对油气输送管道环焊缝热影响区韧性的影响规律[J].焊管,2023,46(12):14-19.[doi:10.19291/j.cnki.1001-3938.2023.12.003]
 NIU Hui,ZHANG Jun,WANG Lei,et al.Effect of Carbon Equivalent on Toughness of Girth Weld HAZ in Oil and Gas Transportation Pipelines[J].,2023,46(12):14-19.[doi:10.19291/j.cnki.1001-3938.2023.12.003]
点击复制

碳当量对油气输送管道环焊缝热影响区韧性的影响规律()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
46
期数:
2023年第12期
页码:
14-19
栏目:
试验与研究
出版日期:
2023-12-19

文章信息/Info

Title:
Effect of Carbon Equivalent on Toughness of Girth Weld HAZ in Oil and Gas Transportation Pipelines
文章编号:
10.19291/j.cnki.1001-3938.2023.12.003
作者:
牛辉张 君王 磊毕宗岳崔绍华韦奉张鹤松燕铸
1. 中油国家石油天然气管材工程技术研究中心有限公司,西安 710018; 2. 中国石油宝鸡石油钢管有限责任公司,陕西 宝鸡721008; 3. 国家石油天然气管网集团有限公司,北京 100013; 4. 钢铁研究总院有限公司 工程用钢研究院,北京100081; 5. 中国石油技术开发有限公司,北京 100028
Author(s):
NIU Hui ZHANG Jun WANG Lei BI Zongyue CUI Shaohua WEI Feng ZHANG Hesong YAN Zhu
1. Chinese National Engineering Research Center for Petroleum and Natural Gas Tubular Goods Co., Ltd., Xi’an 710018, China; 2. CNPC Baoji Petroleum Steel Pipe Co., Ltd., Baoji 721008, Shaanxi, China; 3. China Oil & Gas Piping Network Corporation, Beijing 100013, China; 4. Central Iron and Steel Research Institute, Institute for Engineering Steel, Beijing 100081, China; 5. China Petroleum Technology & Development Corporation (CPTDC), Beijing 100028, China
关键词:
环焊缝热影响区碳当量低温韧性M/A组元
Keywords:
girth weld heat affected zone carbon equivalent low temperature toughness M/A component
分类号:
TG407
DOI:
10.19291/j.cnki.1001-3938.2023.12.003
文献标志码:
A
摘要:
针对高钢级油气长输管道环焊接头热影响区韧性波动的问题,通过热模拟试验机、金相显微镜、扫描电子显微镜、维氏硬度计以及夏比冲击试验机对试验钢的组织及力学性能进行测试,对比分析了不同碳当量的高钢级管线钢一次粗晶区经不同峰值温度二次热循环后组织和低温韧性的变化规律。结果表明,经二次热循环后,在环焊接头热影响区会出现脆化区,且即使母材韧性处于较高水平,在经历多次热循环后,其低温韧性也有可能减小,通过冶金成分的优化设计可以减小低韧性组织所占比例,从而提高焊缝热影响区的低温韧性;不同试验钢在不同温度下的组织形貌差异表明,粗大的粒状贝氏体组织和大量大颗粒的M/A组元是导致韧性下降的根本原因。通过研究X80钢级管线钢在不同热影响作用后组织及低温韧性的影响,为适用于全自动环焊的高韧性X80管线钢的开发及应用提供理论支持。
Abstract:
In order to solve the problem of toughness fluctuations in the heat affected zone of high grade pipeline girth welded joints, the microstructure and mechanical properties of the experimental steel were tested using thermal simulation testing machines, metallographic microscopes, scanning electron microscopes, Vickers hardness testers, and Charpy impact testing machines. The changes in microstructure and low temperature toughness of high grade pipeline steel with different carbon equivalents after secondary thermal cycling at different peak temperatures were compared and analyzed. The results show that after secondary thermal cycling, embrittlement zone will appear in the heat affected zone of the girth welded joint, and even if the toughness of the base material is at a high level, its low temperature toughness may also decrease after multiple thermal cycles. By optimizing the design of metallurgical composition, the proportion of low toughness structures can be reduced, thereby improving the low temperature toughness of the weld heat affected zone. The differences in microstructure and morphology of different experimental steels at different temperatures indicate that the coarse granular bainite structure and many large particle M/A components are the fundamental reasons for the decrease in toughness. By studying the impression of microstructure and low temperature toughness of X80 grade pipeline steel under different heat effects, theoretical support is provided for the development and application of high toughness X80 pipeline steel suitable for fully automatic girth welding.

参考文献/References:

[1] DUAN H,SHAN Y Y,YANG K,et al.Effect of microstructure and crystallographic orientation characteristics on low tempe?ature toughness and fracture behavior of pipeline steels[J].Journal of Materials Research and Technology,2022(17):3172-3185.[2] LI X C,ZHAO J X,JIA S J,et al. Ultrafine microstructure design of high strength pipeline steel for low temperature service:The significant impact on toughness[J]. Materials Letters,2021(303):130429.[3] 段贺,单以银,杨柯,等. Nb和Mo含量对高钢级管线钢相变行为及组织和性能的影响[J].焊管,2021,44(9):7-13.[4] 冯耀荣,吉玲康,李为卫,等. 中国X80管线钢和钢管研发应用进展及展望[J].油气储运,2020,39(6): 612-622.[5] 毕宗岳,低碳微合金钢管焊接接头软化研究[J].焊管,2022,45(7):1-6.[6] 尹长华,范玉然.自保护药芯焊丝半自动焊焊缝韧性离散性成因分析及控制[J].石油工程建设,2014,40(2):61-67.[7] 隋永莉,王鹏宇.中俄东线天然气管道黑河—长岭段环焊缝焊接工艺[J].油气储运,2020,39(9):961-970.[8] 齐丽华,王磊,杨耀斌. X80管线钢半自动自保护药芯环焊接头性能影响因素研究[J].焊管,2021,44(6):7-12.[9] QI L H,JIN Z L,ZHANG J M,et al. Influence factors of X80 pipeline steel girth welding with self?hielded flux?ored wire[J].Materials Science and Technology,2017,33(5):592-601.[10] LI X,MA X,SUBRAMANIAN S V,et al.Influence of prior Austenite grain size on Martensite-Austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel[J]. Materials Science and Engineering:A,2014(616):141-147.[11] 袁军军,禅志善,曹睿,等.多层多道平焊接头冲击性能不稳定的原因分析[J].焊接学报,2017,38(5):100-103.[12] 陈剑虹,曹睿.焊缝金属解理断裂微观机理[J].金属学报,2017,53(11):1427-1444.[13] HAN Y,FEI J,XIN P,et al. Microstructure and properties of intercritically reheated coarse?rained heat affected zone in pipeline steel after secondary thermal cycle[J]. International Journal of Hydrogen Energy,2021,46(52):26445-26456.[14] 贾世民,杨叠,靳海成,等.二次热循环对X80钢管焊缝组织及韧性的影响[J].焊接技术,2018,47(8):31-34.[15] 李光.X100钢级管线钢焊接接头热影响区粗晶区冷却时间计算方法研究[J].焊管,2022,45(1):1-4.[16] 谷雨,姜韶华,徐海,等.X80管线钢CGHAZ连续冷却组织转变规律及力学性能研究[J].焊管,2021,44(6):13-17.[17] 赵红波,毕宗岳,牛辉,等.焊接热输入对厚壁X80管线钢粗晶热影响区组织及性能的影响[J].焊管,2017,40(9):6-10.[18] HUDA N,MIDAWI A R H,GIANETTO J,et al.Influence of martensite-austenite (MA)on impact toughness of X80 line pipe steels[J].Materials Science & Engineering A,2016(662):481-491.收稿日期:2023-02-03

相似文献/References:

[1]罗华权,巨西民,吕 郑,等.油气输送管道对接环焊缝检测现状与研究进展[J].焊管,2008,31(1):40.[doi:1001-3938(2008)01-0040-05]
 LUO Hua-quan,JU Xi-ming,LU Zheng,et al.Current Inspection Situation & Research Progress of Girth Welding Seam of Oil & Gas Transmission Pipeline[J].,2008,31(12):40.[doi:1001-3938(2008)01-0040-05]
[2]许良红,陈延清,牛 辉.焊接热循环对高Nb X70级管线钢热影响区组织和韧性的影响[J].焊管,2009,32(5):18.[doi:1001-3938(2009)05-0018-04]
 XU Liang-hong,CHEN Yan-qing,NIU Hui.Effect on HAZ Structure and Toughness of Welding Thermal Cycle for High Nb X70 Grade Pipeline Steel[J].,2009,32(12):18.[doi:1001-3938(2009)05-0018-04]
[3]项阳.管道环焊缝全自动超声波探伤系统的软件开发[J].焊管,2009,32(5):36.[doi:1001-3938(2009)05-0036-03]
 XIANG Yang.Software Development of Pipeline Circumferential Weld Automatic Ultrasonic Detecting System[J].,2009,32(12):36.[doi:1001-3938(2009)05-0036-03]
[4]苏丽珍,何莹,李桂芝,等.高强管线钢管道环焊缝高强匹配研究[J].焊管,2009,32(9):27.[doi:1001-3938(2009)09-0027-04]
 SU Li-zhen,HE Ying,LI Gui-zhi,et al.High Strength Matching Study on Circumferential Weld of High Grade Line Pipe[J].,2009,32(12):27.[doi:1001-3938(2009)09-0027-04]
[5]张涵,葛玉宏.多丝埋弧焊热影响区冲击韧性分析[J].焊管,2009,32(11):46.[doi:1001-3938(2009)11-0046-05]
 ZHANG Han,GE Yu-hong.Aanlysis on Heat Affected Zone Impact Toughness of Multi-wire Submerged Arc Welding[J].,2009,32(12):46.[doi:1001-3938(2009)11-0046-05]
[6]王绪华,张劲楠.X80级管线钢冲击韧性及其有效晶粒研究[J].焊管,2009,32(12):20.[doi:1001-3938(2009)12-0020-03]
 WANG Xu-hua,ZHANG Jin-nan.Research on Impact Toughness and Effective Grain of X80 Grade Pipeline Steel[J].,2009,32(12):20.[doi:1001-3938(2009)12-0020-03]
[7]甘正红,任文浩.双面埋弧焊钢管焊缝热影响区超声检测回波信号探讨[J].焊管,2010,33(2):45.[doi:1001-3938(2010)02-0045-05]
 GAN Zheng-hong,REN Wen-hao.Study on Echo Wave Signal of Ultrasonic Test at Weld HAZ of Double SAW Pipe[J].,2010,33(12):45.[doi:1001-3938(2010)02-0045-05]
[8]熊庆人,张建勋,李云龙,等.高钢级管线钢环焊缝强度匹配与安全评价综述[J].焊管,2010,33(6):23.[doi:1001-3938(2010)06-0023-05]
 XIONG Qing-ren,ZHANG Jian-xun,LI Yun-long,et al.Strength Match and Safety Evaluation of High Grade Pipeline Steel Circumferential Weld[J].,2010,33(12):23.[doi:1001-3938(2010)06-0023-05]
[9]李翠艳,边城 编译.Ti,N和C对X70管线钢管焊缝热影响区韧性的影响[J].焊管,2010,33(6):60.[doi:1001-3938(2010)06-0060-06]
 Edited and Translated by LI Cui-yan,BIAN Cheng.Influence of Ti,N and C on Weld HAZ Toughness of X70 Pipeline Steel[J].,2010,33(12):60.[doi:1001-3938(2010)06-0060-06]
[10]刘靖,张双平,韩静涛.压力容器用508-Ⅲ钢焊接热影响区组织分析[J].焊管,2011,34(7):23.
[11]孙 宏,郑青昊,宗秋丽 编译.Nb微合金化对环焊焊接接头热影响区显微组织的影响[J].焊管,2018,41(8):65.[doi:10.19291/j.cnki.1001-3938.2018.08.012]
 Edited and Translated by SUN Hong,ZHENG Qinghao,ZONG Qiuli.Effect of Nb Microalloying on the Heat Affected Zone Microstructure of Girth Welded Joints[J].,2018,41(12):65.[doi:10.19291/j.cnki.1001-3938.2018.08.012]

备注/Memo

备注/Memo:
收稿日期:2023-02-03基金项目: 中国石油天然气集团有限公司“超临界二氧化碳长距离管道关键技术研究”(项目编号2021ZZ01-02);中国石油天然气集团有限公司前瞻性基础性及战略性技术攻关课题“中长距离管道纯氢/掺氢输送关键技术研究”(项目编号2021DJ(JT))。作者简介:牛辉(1969—),女,硕士,教授级高工,主要从事油气输送管材开发及配套焊接材料、焊接工艺技术研究工作。
更新日期/Last Update: 2023-12-26